Update README.md
Browse files
README.md
CHANGED
|
@@ -17,11 +17,15 @@ library_name: transformers
|
|
| 17 |
|
| 18 |
# LLM2Vec4CXR - Fine-tuned Model for Chest X-ray Report Analysis
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
## Model Description
|
| 23 |
|
| 24 |
-
LLM2Vec4CXR is a bidirectional
|
|
|
|
| 25 |
|
| 26 |
### Key Features
|
| 27 |
|
|
@@ -161,6 +165,47 @@ best_match = options[torch.argmax(scores)]
|
|
| 161 |
print(f"Best match: {best_match} (score: {torch.max(scores):.4f})")
|
| 162 |
```
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
## API Reference
|
| 165 |
|
| 166 |
The model provides several convenient methods:
|
|
@@ -172,19 +217,12 @@ The model provides several convenient methods:
|
|
| 172 |
- **`compute_similarities(query_text, candidate_texts)`**: One-line similarity computation
|
| 173 |
- **`from_pretrained(..., pooling_mode="latent_attention")`**: Automatic latent attention weight loading
|
| 174 |
|
| 175 |
-
### Migration from Manual Usage
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
```python
|
| 180 |
-
# Old way (still works)
|
| 181 |
-
tokenized = model.tokenizer(text, return_tensors="pt", ...)
|
| 182 |
-
tokenized["embed_mask"] = tokenized["attention_mask"].clone()
|
| 183 |
-
embeddings = model(tokenized)
|
| 184 |
-
|
| 185 |
-
# New way (recommended)
|
| 186 |
-
embeddings = model.encode_text([text])
|
| 187 |
-
```
|
| 188 |
|
| 189 |
## Evaluation
|
| 190 |
|
|
@@ -195,7 +233,11 @@ The model has been evaluated on chest X-ray report analysis tasks, particularly
|
|
| 195 |
|
| 196 |
### Sample Performance
|
| 197 |
|
| 198 |
-
The model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
## Intended Use
|
| 201 |
|
|
@@ -224,11 +266,11 @@ The model shows improved performance compared to the base model on medical text
|
|
| 224 |
If you use this model in your research, please cite:
|
| 225 |
|
| 226 |
```bibtex
|
| 227 |
-
@
|
| 228 |
-
title={
|
| 229 |
-
author={Hanbin
|
| 230 |
-
|
| 231 |
-
|
| 232 |
}
|
| 233 |
```
|
| 234 |
|
|
|
|
| 17 |
|
| 18 |
# LLM2Vec4CXR - Fine-tuned Model for Chest X-ray Report Analysis
|
| 19 |
|
| 20 |
+
|
| 21 |
+
LLM2Vec4CXR is optimized for chest X-ray report analysis and medical text understanding.
|
| 22 |
+
It is introduced in our paper [Exploring the Capabilities of LLM Encoders for Image–Text Retrieval in Chest X-rays](https://arxiv.org/pdf/2509.15234).
|
| 23 |
+
|
| 24 |
|
| 25 |
## Model Description
|
| 26 |
|
| 27 |
+
LLM2Vec4CXR is a **bidirectional text encoder** fine-tuned with a `latent_attention` pooling strategy.
|
| 28 |
+
This design enhances semantic representation of chest X-ray reports, improving performance on clinical text similarity, retrieval, and interpretation tasks.
|
| 29 |
|
| 30 |
### Key Features
|
| 31 |
|
|
|
|
| 165 |
print(f"Best match: {best_match} (score: {torch.max(scores):.4f})")
|
| 166 |
```
|
| 167 |
|
| 168 |
+
Or retrieving clinically similar reports:
|
| 169 |
+
```
|
| 170 |
+
import torch
|
| 171 |
+
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 172 |
+
|
| 173 |
+
# Load model
|
| 174 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 175 |
+
model = LLM2Vec.from_pretrained(
|
| 176 |
+
base_model_name_or_path='lukeingawesome/llm2vec4cxr',
|
| 177 |
+
pooling_mode="latent_attention",
|
| 178 |
+
max_length=512,
|
| 179 |
+
enable_bidirectional=True,
|
| 180 |
+
torch_dtype=torch.bfloat16,
|
| 181 |
+
use_safetensors=True,
|
| 182 |
+
).to(device).eval()
|
| 183 |
+
|
| 184 |
+
# Configure tokenizer
|
| 185 |
+
model.tokenizer.padding_side = 'left'
|
| 186 |
+
|
| 187 |
+
# Instruction for retrieval
|
| 188 |
+
instruction = 'Retrieve semantically similar sentences'
|
| 189 |
+
query_report = "There is a small LLLF PE with basal atelectasis."
|
| 190 |
+
query_text = instruction + '!@#$%^&*()' + query_report
|
| 191 |
+
|
| 192 |
+
# Candidate reports
|
| 193 |
+
candidate_reports = [
|
| 194 |
+
"No acute cardiopulmonary abnormality.",
|
| 195 |
+
"Small left pleural effusion is present.",
|
| 196 |
+
"Large right pleural effusion causing compressive atelectasis.",
|
| 197 |
+
"Heart size is normal with no evidence of pleural effusion.",
|
| 198 |
+
"There is left pleural effusion."
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
# Compute similarity scores
|
| 202 |
+
scores = model.compute_similarities(query_text, candidate_reports)
|
| 203 |
+
|
| 204 |
+
# Retrieve the most similar report
|
| 205 |
+
best_match = candidate_reports[torch.argmax(scores)]
|
| 206 |
+
print(f"Most similar report: {best_match} (score: {torch.max(scores):.4f})")
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
## API Reference
|
| 210 |
|
| 211 |
The model provides several convenient methods:
|
|
|
|
| 217 |
- **`compute_similarities(query_text, candidate_texts)`**: One-line similarity computation
|
| 218 |
- **`from_pretrained(..., pooling_mode="latent_attention")`**: Automatic latent attention weight loading
|
| 219 |
|
|
|
|
| 220 |
|
| 221 |
+
📄 **Related Papers**:
|
| 222 |
+
- [Exploring the Capabilities of LLM Encoders for Image–Text Retrieval in Chest X-rays](https://arxiv.org/pdf/2509.15234)
|
| 223 |
+
*Ko, Hanbin, et al. "Exploring the capabilities of LLM encoders for image–text retrieval in chest X-rays." arXiv preprint arXiv:2509.15234 (2025).*
|
| 224 |
+
- [LLM2CLIP4CXR](https://github.com/lukeingawesome/llm2clip4cxr): A CLIP-based model that leverages the LLM2Vec encoder to align visual and textual representations of chest X-rays.
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
## Evaluation
|
| 228 |
|
|
|
|
| 233 |
|
| 234 |
### Sample Performance
|
| 235 |
|
| 236 |
+
The model demonstrates consistent improvements over the base LLM2CLIP architecture on medical text understanding benchmarks.
|
| 237 |
+
In particular, **LLM2Vec4CXR** shows stronger performance in:
|
| 238 |
+
- Handling medical abbreviations and radiological terminology
|
| 239 |
+
- Capturing fine-grained semantic differences in chest X-ray reports
|
| 240 |
+
|
| 241 |
|
| 242 |
## Intended Use
|
| 243 |
|
|
|
|
| 266 |
If you use this model in your research, please cite:
|
| 267 |
|
| 268 |
```bibtex
|
| 269 |
+
@article{ko2025exploring,
|
| 270 |
+
title={Exploring the Capabilities of LLM Encoders for Image--Text Retrieval in Chest X-rays},
|
| 271 |
+
author={Ko, Hanbin and Cho, Gihun and Baek, Inhyeok and Kim, Donguk and Koo, Joonbeom and Kim, Changi and Lee, Dongheon and Park, Chang Min},
|
| 272 |
+
journal={arXiv preprint arXiv:2509.15234},
|
| 273 |
+
year={2025}
|
| 274 |
}
|
| 275 |
```
|
| 276 |
|