Create llm2vec_wrapper.py
Browse files- llm2vec_wrapper.py +423 -0
llm2vec_wrapper.py
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from llm2vec import LLM2Vec
|
| 2 |
+
from peft import PeftModel
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoConfig,
|
| 5 |
+
PretrainedConfig,
|
| 6 |
+
AutoTokenizer,
|
| 7 |
+
|
| 8 |
+
)
|
| 9 |
+
import torch
|
| 10 |
+
import logging
|
| 11 |
+
import json
|
| 12 |
+
import os
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
class LLM2VecWrapper(LLM2Vec):
|
| 15 |
+
def __init__(self, *args, **kwargs):
|
| 16 |
+
super(LLM2VecWrapper, self).__init__(*args, **kwargs)
|
| 17 |
+
|
| 18 |
+
def to(self, device_or_dtype):
|
| 19 |
+
"""Override to method to ensure all modules are properly moved."""
|
| 20 |
+
result = super().to(device_or_dtype)
|
| 21 |
+
|
| 22 |
+
# Ensure latent attention pooling is also moved
|
| 23 |
+
if hasattr(result, 'latent_attn') and result.latent_attn is not None:
|
| 24 |
+
result.latent_attn = result.latent_attn.to(device_or_dtype)
|
| 25 |
+
|
| 26 |
+
return result
|
| 27 |
+
|
| 28 |
+
def prepare_for_tokenization(self, text):
|
| 29 |
+
text = (
|
| 30 |
+
"<|start_header_id|>user<|end_header_id|>\n\n"
|
| 31 |
+
+ text.strip()
|
| 32 |
+
+ "<|eot_id|>"
|
| 33 |
+
)
|
| 34 |
+
return text
|
| 35 |
+
|
| 36 |
+
def encode_text(self, text, max_length=None):
|
| 37 |
+
"""
|
| 38 |
+
Encode text to embeddings with proper embed_mask handling.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
text (str or list): Text(s) to encode
|
| 42 |
+
max_length (int, optional): Maximum sequence length
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
torch.Tensor: Text embeddings
|
| 46 |
+
"""
|
| 47 |
+
if max_length is None:
|
| 48 |
+
max_length = getattr(self, 'max_length', 512)
|
| 49 |
+
|
| 50 |
+
inputs = self.tokenizer(
|
| 51 |
+
text,
|
| 52 |
+
return_tensors="pt",
|
| 53 |
+
padding=True,
|
| 54 |
+
truncation=True,
|
| 55 |
+
max_length=max_length
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Add embed_mask (same as attention_mask for simple text encoding)
|
| 59 |
+
inputs["embed_mask"] = inputs["attention_mask"].clone()
|
| 60 |
+
|
| 61 |
+
# Move to same device as model
|
| 62 |
+
import torch
|
| 63 |
+
model_device = next(self.parameters()).device
|
| 64 |
+
inputs = {k: v.to(model_device) for k, v in inputs.items()}
|
| 65 |
+
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
embeddings = self(inputs)
|
| 68 |
+
|
| 69 |
+
return embeddings
|
| 70 |
+
|
| 71 |
+
def tokenize_with_separator(self, texts, max_length=None, separator='!@#$%^&*()'):
|
| 72 |
+
"""
|
| 73 |
+
Tokenize texts with special handling for separator-based splitting.
|
| 74 |
+
This is useful for instruction-following tasks.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
texts (list): List of texts to tokenize
|
| 78 |
+
max_length (int, optional): Maximum sequence length
|
| 79 |
+
separator (str): Separator to split instruction from text
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
dict: Tokenized inputs with attention masks and embed masks
|
| 83 |
+
"""
|
| 84 |
+
if max_length is None:
|
| 85 |
+
max_length = getattr(self, 'max_length', 512)
|
| 86 |
+
|
| 87 |
+
texts_2 = []
|
| 88 |
+
original_texts = []
|
| 89 |
+
|
| 90 |
+
for text in texts:
|
| 91 |
+
parts = text.split(separator)
|
| 92 |
+
texts_2.append(parts[1] if len(parts) > 1 else "")
|
| 93 |
+
original_texts.append("".join(parts))
|
| 94 |
+
|
| 95 |
+
# Tokenize original texts
|
| 96 |
+
tokenized = self.tokenizer(
|
| 97 |
+
original_texts,
|
| 98 |
+
return_tensors="pt",
|
| 99 |
+
padding=True,
|
| 100 |
+
truncation=True,
|
| 101 |
+
max_length=max_length,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Create embedding masks for the separated parts
|
| 105 |
+
import torch
|
| 106 |
+
embed_mask = None
|
| 107 |
+
for t_i, t in enumerate(texts_2):
|
| 108 |
+
ids = self.tokenizer(
|
| 109 |
+
[t],
|
| 110 |
+
return_tensors="pt",
|
| 111 |
+
padding=True,
|
| 112 |
+
truncation=True,
|
| 113 |
+
max_length=max_length,
|
| 114 |
+
add_special_tokens=False,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
e_m = torch.zeros_like(tokenized["attention_mask"][t_i])
|
| 118 |
+
if len(ids["input_ids"][0]) > 0:
|
| 119 |
+
e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
|
| 120 |
+
|
| 121 |
+
if embed_mask is None:
|
| 122 |
+
embed_mask = e_m.unsqueeze(0)
|
| 123 |
+
else:
|
| 124 |
+
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
|
| 125 |
+
|
| 126 |
+
tokenized["embed_mask"] = embed_mask
|
| 127 |
+
return tokenized
|
| 128 |
+
|
| 129 |
+
def encode_with_instruction(self, texts, max_length=None, separator='!@#$%^&*()'):
|
| 130 |
+
"""
|
| 131 |
+
Encode texts with instruction-following using separator-based processing.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
texts (list): List of texts with instructions separated by separator
|
| 135 |
+
max_length (int, optional): Maximum sequence length
|
| 136 |
+
separator (str): Separator between instruction and text
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
torch.Tensor: Text embeddings
|
| 140 |
+
"""
|
| 141 |
+
tokenized = self.tokenize_with_separator(texts, max_length, separator)
|
| 142 |
+
|
| 143 |
+
# Move to same device as model
|
| 144 |
+
import torch
|
| 145 |
+
model_device = next(self.parameters()).device
|
| 146 |
+
tokenized = {k: v.to(model_device) for k, v in tokenized.items()}
|
| 147 |
+
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
embeddings = self(tokenized)
|
| 150 |
+
|
| 151 |
+
return embeddings
|
| 152 |
+
|
| 153 |
+
def encode_with_separator(self, texts, device=None, max_length=None, separator='!@#$%^&*()'):
|
| 154 |
+
"""
|
| 155 |
+
Encode texts with special separator-based handling for instruction/text pairs.
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
texts (list): List of texts to encode (with separator for instruction/text pairs)
|
| 159 |
+
device: Device to run on (auto-detect if None)
|
| 160 |
+
max_length: Maximum sequence length (use model default if None)
|
| 161 |
+
separator: Separator string for instruction/text pairs
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
torch.Tensor: Embeddings for the texts
|
| 165 |
+
"""
|
| 166 |
+
if device is None:
|
| 167 |
+
device = next(self.parameters()).device
|
| 168 |
+
if max_length is None:
|
| 169 |
+
max_length = 512
|
| 170 |
+
|
| 171 |
+
# Ensure model is on the right device
|
| 172 |
+
self = self.to(device)
|
| 173 |
+
|
| 174 |
+
# Process texts with separator
|
| 175 |
+
texts_2 = []
|
| 176 |
+
original_texts = []
|
| 177 |
+
|
| 178 |
+
for text in texts:
|
| 179 |
+
parts = text.split(separator)
|
| 180 |
+
texts_2.append(parts[1] if len(parts) > 1 else "")
|
| 181 |
+
original_texts.append("".join(parts))
|
| 182 |
+
|
| 183 |
+
# Tokenize original texts
|
| 184 |
+
tokenized = self.tokenizer(
|
| 185 |
+
original_texts,
|
| 186 |
+
return_tensors="pt",
|
| 187 |
+
padding=True,
|
| 188 |
+
truncation=True,
|
| 189 |
+
max_length=max_length,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Create embedding masks
|
| 193 |
+
embed_mask = None
|
| 194 |
+
for t_i, t in enumerate(texts_2):
|
| 195 |
+
ids = self.tokenizer(
|
| 196 |
+
[t],
|
| 197 |
+
return_tensors="pt",
|
| 198 |
+
padding=True,
|
| 199 |
+
truncation=True,
|
| 200 |
+
max_length=max_length,
|
| 201 |
+
add_special_tokens=False,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
e_m = torch.zeros_like(tokenized["attention_mask"][t_i])
|
| 205 |
+
if len(ids["input_ids"][0]) > 0:
|
| 206 |
+
e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
|
| 207 |
+
|
| 208 |
+
if embed_mask is None:
|
| 209 |
+
embed_mask = e_m.unsqueeze(0)
|
| 210 |
+
else:
|
| 211 |
+
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
|
| 212 |
+
|
| 213 |
+
tokenized["embed_mask"] = embed_mask
|
| 214 |
+
|
| 215 |
+
# Move to device and compute embeddings
|
| 216 |
+
tokenized = {k: v.to(device) for k, v in tokenized.items()}
|
| 217 |
+
tokenized = {k: v.to(self.model.dtype) if v.dtype.is_floating_point else v
|
| 218 |
+
for k, v in tokenized.items()}
|
| 219 |
+
|
| 220 |
+
with torch.no_grad():
|
| 221 |
+
embeddings = self(tokenized)
|
| 222 |
+
|
| 223 |
+
return embeddings
|
| 224 |
+
|
| 225 |
+
def compute_similarities(self, query_text, candidate_texts, device=None, separator='!@#$%^&*()'):
|
| 226 |
+
"""
|
| 227 |
+
Compute similarity scores between a query text and candidate texts.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
query_text (str): The query text (with separator for instruction/text pairs)
|
| 231 |
+
candidate_texts (list): List of candidate texts to compare against
|
| 232 |
+
device: Device to run on (auto-detect if None)
|
| 233 |
+
separator: Separator string for instruction/text pairs
|
| 234 |
+
|
| 235 |
+
Returns:
|
| 236 |
+
torch.Tensor: Similarity scores for each candidate
|
| 237 |
+
"""
|
| 238 |
+
import torch.nn.functional as F
|
| 239 |
+
|
| 240 |
+
if device is None:
|
| 241 |
+
device = next(self.parameters()).device
|
| 242 |
+
|
| 243 |
+
# Combine query and candidates
|
| 244 |
+
all_texts = [query_text] + candidate_texts
|
| 245 |
+
|
| 246 |
+
# Get embeddings
|
| 247 |
+
embeddings = self.encode_with_separator(all_texts, device=device, separator=separator)
|
| 248 |
+
|
| 249 |
+
# Compute similarities between query (first embedding) and candidates
|
| 250 |
+
similarities = F.cosine_similarity(embeddings[0], embeddings[1:], dim=1)
|
| 251 |
+
|
| 252 |
+
return similarities
|
| 253 |
+
|
| 254 |
+
def _load_latent_attention_weights(self, model_path, use_safetensors=True):
|
| 255 |
+
"""
|
| 256 |
+
Automatically load latent attention weights from model files.
|
| 257 |
+
|
| 258 |
+
Args:
|
| 259 |
+
model_path: Path to model (local directory or HuggingFace repo)
|
| 260 |
+
use_safetensors: Whether to use safetensors format
|
| 261 |
+
"""
|
| 262 |
+
import os
|
| 263 |
+
|
| 264 |
+
if os.path.isdir(model_path):
|
| 265 |
+
# Local directory - try pytorch_model.bin first
|
| 266 |
+
pytorch_model_path = os.path.join(model_path, "pytorch_model.bin")
|
| 267 |
+
if os.path.exists(pytorch_model_path):
|
| 268 |
+
print(f"Loading latent attention weights from {pytorch_model_path}")
|
| 269 |
+
try:
|
| 270 |
+
import torch
|
| 271 |
+
state_dict = torch.load(pytorch_model_path, weights_only=True)
|
| 272 |
+
latent_attn_weights = {k: v for k, v in state_dict.items() if k.startswith('latent_attn.')}
|
| 273 |
+
|
| 274 |
+
if latent_attn_weights:
|
| 275 |
+
missing_keys, unexpected_keys = self.latent_attn.load_state_dict(
|
| 276 |
+
{k.replace('latent_attn.', ''): v for k, v in latent_attn_weights.items()},
|
| 277 |
+
strict=False
|
| 278 |
+
)
|
| 279 |
+
if not missing_keys and not unexpected_keys:
|
| 280 |
+
print(f"✅ Successfully loaded {len(latent_attn_weights)} latent attention weights")
|
| 281 |
+
else:
|
| 282 |
+
print(f"⚠️ Partial loading: missing={missing_keys}, unexpected={unexpected_keys}")
|
| 283 |
+
else:
|
| 284 |
+
print("⚠️ No latent attention weights found in the model file")
|
| 285 |
+
except Exception as e:
|
| 286 |
+
print(f"❌ Error loading latent attention weights: {e}")
|
| 287 |
+
else:
|
| 288 |
+
# HuggingFace repository - load from safetensors
|
| 289 |
+
if use_safetensors:
|
| 290 |
+
print("Loading latent attention weights from HuggingFace safetensors...")
|
| 291 |
+
try:
|
| 292 |
+
from safetensors.torch import load_file
|
| 293 |
+
from huggingface_hub import hf_hub_download
|
| 294 |
+
|
| 295 |
+
# Download the safetensors file
|
| 296 |
+
safetensors_path = hf_hub_download(repo_id=model_path, filename="model.safetensors")
|
| 297 |
+
|
| 298 |
+
# Load weights from safetensors
|
| 299 |
+
safetensors_weights = load_file(safetensors_path)
|
| 300 |
+
|
| 301 |
+
# Extract latent attention weights
|
| 302 |
+
latent_attn_weights = {k: v for k, v in safetensors_weights.items() if k.startswith('latent_attn.')}
|
| 303 |
+
|
| 304 |
+
if latent_attn_weights:
|
| 305 |
+
print(f"Found {len(latent_attn_weights)} latent attention weights in safetensors")
|
| 306 |
+
|
| 307 |
+
# Load the weights into the latent attention module
|
| 308 |
+
missing_keys, unexpected_keys = self.latent_attn.load_state_dict(
|
| 309 |
+
{k.replace('latent_attn.', ''): v for k, v in latent_attn_weights.items()},
|
| 310 |
+
strict=False
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
if not missing_keys and not unexpected_keys:
|
| 314 |
+
print(f"✅ Successfully loaded {len(latent_attn_weights)} latent attention weights from safetensors")
|
| 315 |
+
else:
|
| 316 |
+
print(f"⚠️ Partial loading: missing={missing_keys}, unexpected={unexpected_keys}")
|
| 317 |
+
else:
|
| 318 |
+
print("⚠️ No latent attention weights found in safetensors file")
|
| 319 |
+
|
| 320 |
+
except Exception as e:
|
| 321 |
+
print(f"❌ Error loading latent attention weights from safetensors: {e}")
|
| 322 |
+
|
| 323 |
+
@classmethod
|
| 324 |
+
def from_pretrained(
|
| 325 |
+
cls,
|
| 326 |
+
base_model_name_or_path,
|
| 327 |
+
peft_model_name_or_path=None,
|
| 328 |
+
merge_peft=False,
|
| 329 |
+
enable_bidirectional=True,
|
| 330 |
+
extra_model_name_or_path=None,
|
| 331 |
+
**kwargs,
|
| 332 |
+
):
|
| 333 |
+
# pop out encoder args
|
| 334 |
+
keys = ["pooling_mode", "max_length", "doc_max_length", "skip_instruction"]
|
| 335 |
+
encoder_args = {
|
| 336 |
+
key: kwargs.pop(key, None) for key in keys if kwargs.get(key) is not None
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)
|
| 340 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 341 |
+
tokenizer.padding_side = "left"
|
| 342 |
+
|
| 343 |
+
config = AutoConfig.from_pretrained(base_model_name_or_path)
|
| 344 |
+
config_class_name = config.__class__.__name__
|
| 345 |
+
|
| 346 |
+
model_class = cls._get_model_class(
|
| 347 |
+
config_class_name, enable_bidirectional=enable_bidirectional
|
| 348 |
+
)
|
| 349 |
+
model = model_class.from_pretrained(base_model_name_or_path, **kwargs)
|
| 350 |
+
|
| 351 |
+
if os.path.isdir(base_model_name_or_path) and os.path.exists(
|
| 352 |
+
f"{base_model_name_or_path}/config.json"
|
| 353 |
+
):
|
| 354 |
+
with open(f"{base_model_name_or_path}/config.json", "r") as fIn:
|
| 355 |
+
config_dict = json.load(fIn)
|
| 356 |
+
config = PretrainedConfig.from_dict(config_dict)
|
| 357 |
+
model.config._name_or_path = config._name_or_path
|
| 358 |
+
|
| 359 |
+
# For special case where config.json and adapter weights are in the same directory
|
| 360 |
+
if hasattr(model, "peft_config"):
|
| 361 |
+
model = PeftModel.from_pretrained(
|
| 362 |
+
model,
|
| 363 |
+
base_model_name_or_path,
|
| 364 |
+
)
|
| 365 |
+
model = model.merge_and_unload()
|
| 366 |
+
|
| 367 |
+
if peft_model_name_or_path is not None:
|
| 368 |
+
model = PeftModel.from_pretrained(
|
| 369 |
+
model,
|
| 370 |
+
peft_model_name_or_path,
|
| 371 |
+
)
|
| 372 |
+
if merge_peft:
|
| 373 |
+
model = model.merge_and_unload()
|
| 374 |
+
if extra_model_name_or_path is not None:
|
| 375 |
+
logger.info(f"Loading extra model from {extra_model_name_or_path}")
|
| 376 |
+
if not merge_peft:
|
| 377 |
+
model = model.merge_and_unload()
|
| 378 |
+
if isinstance(extra_model_name_or_path, str):
|
| 379 |
+
model = PeftModel.from_pretrained(
|
| 380 |
+
model,
|
| 381 |
+
extra_model_name_or_path,
|
| 382 |
+
)
|
| 383 |
+
model = model.merge_and_unload()
|
| 384 |
+
elif isinstance(extra_model_name_or_path, list):
|
| 385 |
+
for extra_model in extra_model_name_or_path:
|
| 386 |
+
model = PeftModel.from_pretrained(
|
| 387 |
+
model,
|
| 388 |
+
extra_model,
|
| 389 |
+
)
|
| 390 |
+
peft_model_name_or_path = extra_model
|
| 391 |
+
model = model.merge_and_unload()
|
| 392 |
+
else:
|
| 393 |
+
raise ValueError(
|
| 394 |
+
f"extra_model_name_or_path should be a string or a list of strings."
|
| 395 |
+
)
|
| 396 |
+
config = {}
|
| 397 |
+
config_addr = (
|
| 398 |
+
peft_model_name_or_path
|
| 399 |
+
if peft_model_name_or_path is not None
|
| 400 |
+
else base_model_name_or_path
|
| 401 |
+
)
|
| 402 |
+
if os.path.exists(f"{config_addr}/llm2vec_config.json"):
|
| 403 |
+
with open(f"{config_addr}/llm2vec_config.json", "r") as fIn:
|
| 404 |
+
llm2vec_config = json.load(fIn)
|
| 405 |
+
config.update(llm2vec_config)
|
| 406 |
+
|
| 407 |
+
for key, value in encoder_args.items():
|
| 408 |
+
config[key] = value
|
| 409 |
+
|
| 410 |
+
llm2vec_model = cls(model=model, tokenizer=tokenizer, **config)
|
| 411 |
+
|
| 412 |
+
# Auto-load latent attention weights if using latent_attention pooling
|
| 413 |
+
if (hasattr(llm2vec_model, 'latent_attn') and
|
| 414 |
+
llm2vec_model.latent_attn is not None and
|
| 415 |
+
llm2vec_model.pooling_mode == "latent_attention"):
|
| 416 |
+
|
| 417 |
+
llm2vec_model._load_latent_attention_weights(base_model_name_or_path, kwargs.get('use_safetensors', True))
|
| 418 |
+
|
| 419 |
+
# Ensure the entire model is converted to the requested dtype
|
| 420 |
+
if 'torch_dtype' in kwargs and kwargs['torch_dtype'] is not None:
|
| 421 |
+
llm2vec_model = llm2vec_model.to(kwargs['torch_dtype'])
|
| 422 |
+
|
| 423 |
+
return llm2vec_model
|