Update README.md
Browse files
README.md
CHANGED
|
@@ -26,11 +26,13 @@ LLM2Vec4CXR is a bidirectional language model that converts the base decoder-onl
|
|
| 26 |
### Key Features
|
| 27 |
|
| 28 |
- **Base Architecture**: LLM2CLIP-Llama-3.2-1B-Instruct
|
| 29 |
-
- **Pooling Mode**: Latent Attention (
|
| 30 |
- **Bidirectional Processing**: Enabled for better context understanding
|
| 31 |
- **Medical Domain**: Specialized for chest X-ray report analysis
|
| 32 |
- **Max Length**: 512 tokens
|
| 33 |
- **Precision**: bfloat16
|
|
|
|
|
|
|
| 34 |
|
| 35 |
## Training Details
|
| 36 |
|
|
@@ -62,20 +64,22 @@ pip install -e .
|
|
| 62 |
### Basic Usage
|
| 63 |
|
| 64 |
```python
|
|
|
|
| 65 |
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 66 |
|
| 67 |
-
# Load the model
|
| 68 |
model = LLM2Vec.from_pretrained(
|
| 69 |
base_model_name_or_path='lukeingawesome/llm2vec4cxr',
|
| 70 |
-
|
| 71 |
-
pooling_mode="latent_attention",
|
| 72 |
max_length=512,
|
|
|
|
| 73 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
-
# Simple text encoding
|
| 77 |
report = "There is a small increase in the left-sided effusion. There continues to be volume loss at both bases."
|
| 78 |
-
embedding = model.encode_text(report)
|
| 79 |
|
| 80 |
# Multiple texts at once
|
| 81 |
reports = [
|
|
@@ -86,38 +90,90 @@ reports = [
|
|
| 86 |
embeddings = model.encode_text(reports)
|
| 87 |
```
|
| 88 |
|
| 89 |
-
### Advanced Usage with Instructions
|
| 90 |
|
| 91 |
```python
|
| 92 |
# For instruction-following tasks with separator
|
| 93 |
-
separator = '!@#$%^&*()'
|
| 94 |
instruction = 'Determine the change or the status of the pleural effusion.'
|
| 95 |
report = 'There is a small increase in the left-sided effusion.'
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
```
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
###
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
```python
|
| 109 |
-
#
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
return embeddings
|
| 117 |
-
|
| 118 |
-
# For instruction-based tasks, use the built-in tokenize_with_separator method
|
| 119 |
-
tokenized = model.tokenize_with_separator([text_with_instruction])
|
| 120 |
-
embedding = model(tokenized)
|
| 121 |
```
|
| 122 |
|
| 123 |
## Evaluation
|
|
|
|
| 26 |
### Key Features
|
| 27 |
|
| 28 |
- **Base Architecture**: LLM2CLIP-Llama-3.2-1B-Instruct
|
| 29 |
+
- **Pooling Mode**: Latent Attention (fine-tuned weights automatically loaded)
|
| 30 |
- **Bidirectional Processing**: Enabled for better context understanding
|
| 31 |
- **Medical Domain**: Specialized for chest X-ray report analysis
|
| 32 |
- **Max Length**: 512 tokens
|
| 33 |
- **Precision**: bfloat16
|
| 34 |
+
- **Automatic Loading**: Latent attention weights are automatically loaded from safetensors
|
| 35 |
+
- **Simple API**: Built-in methods for similarity computation and instruction-based encoding
|
| 36 |
|
| 37 |
## Training Details
|
| 38 |
|
|
|
|
| 64 |
### Basic Usage
|
| 65 |
|
| 66 |
```python
|
| 67 |
+
import torch
|
| 68 |
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 69 |
|
| 70 |
+
# Load the model - latent attention weights are automatically loaded!
|
| 71 |
model = LLM2Vec.from_pretrained(
|
| 72 |
base_model_name_or_path='lukeingawesome/llm2vec4cxr',
|
| 73 |
+
pooling_mode="latent_attention", # This automatically loads the trained weights
|
|
|
|
| 74 |
max_length=512,
|
| 75 |
+
enable_bidirectional=True,
|
| 76 |
torch_dtype=torch.bfloat16,
|
| 77 |
+
use_safetensors=True,
|
| 78 |
)
|
| 79 |
|
| 80 |
+
# Simple text encoding
|
| 81 |
report = "There is a small increase in the left-sided effusion. There continues to be volume loss at both bases."
|
| 82 |
+
embedding = model.encode_text([report])
|
| 83 |
|
| 84 |
# Multiple texts at once
|
| 85 |
reports = [
|
|
|
|
| 90 |
embeddings = model.encode_text(reports)
|
| 91 |
```
|
| 92 |
|
| 93 |
+
### Advanced Usage with Instructions and Similarity
|
| 94 |
|
| 95 |
```python
|
| 96 |
# For instruction-following tasks with separator
|
|
|
|
| 97 |
instruction = 'Determine the change or the status of the pleural effusion.'
|
| 98 |
report = 'There is a small increase in the left-sided effusion.'
|
| 99 |
+
query_text = instruction + '!@#$%^&*()' + report
|
| 100 |
+
|
| 101 |
+
# Compare against multiple options
|
| 102 |
+
candidates = [
|
| 103 |
+
'No pleural effusion',
|
| 104 |
+
'Pleural effusion present',
|
| 105 |
+
'Pleural effusion is worsening',
|
| 106 |
+
'Pleural effusion is improving'
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
# Get similarity scores using the built-in method
|
| 110 |
+
similarities = model.compute_similarities(query_text, candidates)
|
| 111 |
+
print(f"Similarities: {similarities}")
|
| 112 |
+
|
| 113 |
+
# For custom separator-based encoding
|
| 114 |
+
embeddings = model.encode_with_separator([query_text], separator='!@#$%^&*()')
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
**Note**: The model now includes convenient methods like `compute_similarities()` and `encode_with_separator()` that handle complex tokenization automatically.
|
| 118 |
+
|
| 119 |
+
### Quick Start Example
|
| 120 |
+
|
| 121 |
+
Here's a complete example showing the model's capabilities:
|
| 122 |
+
|
| 123 |
+
```python
|
| 124 |
+
import torch
|
| 125 |
+
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 126 |
+
|
| 127 |
+
# Load model
|
| 128 |
+
model = LLM2Vec.from_pretrained(
|
| 129 |
+
'lukeingawesome/llm2vec4cxr',
|
| 130 |
+
pooling_mode="latent_attention",
|
| 131 |
+
torch_dtype=torch.bfloat16,
|
| 132 |
+
use_safetensors=True,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Medical text analysis
|
| 136 |
+
instruction = 'Determine the change or the status of the pleural effusion.'
|
| 137 |
+
report = 'There is a small increase in the left-sided effusion.'
|
| 138 |
+
query = instruction + '!@#$%^&*()' + report
|
| 139 |
+
|
| 140 |
+
# Compare with different diagnoses
|
| 141 |
+
options = [
|
| 142 |
+
'No pleural effusion',
|
| 143 |
+
'Pleural effusion is worsening',
|
| 144 |
+
'Pleural effusion is stable',
|
| 145 |
+
'Pleural effusion is improving'
|
| 146 |
+
]
|
| 147 |
|
| 148 |
+
# Get similarity scores
|
| 149 |
+
scores = model.compute_similarities(query, options)
|
| 150 |
+
best_match = options[torch.argmax(scores)]
|
| 151 |
+
print(f"Best match: {best_match} (score: {torch.max(scores):.4f})")
|
| 152 |
```
|
| 153 |
|
| 154 |
+
## API Reference
|
| 155 |
+
|
| 156 |
+
The model provides several convenient methods:
|
| 157 |
|
| 158 |
+
### Core Methods
|
| 159 |
|
| 160 |
+
- **`encode_text(texts)`**: Simple text encoding with automatic embed_mask handling
|
| 161 |
+
- **`encode_with_separator(texts, separator='!@#$%^&*()')`**: Encoding with instruction/content separation
|
| 162 |
+
- **`compute_similarities(query_text, candidate_texts)`**: One-line similarity computation
|
| 163 |
+
- **`from_pretrained(..., pooling_mode="latent_attention")`**: Automatic latent attention weight loading
|
| 164 |
+
|
| 165 |
+
### Migration from Manual Usage
|
| 166 |
+
|
| 167 |
+
If you were previously using manual tokenization, you can now simply use:
|
| 168 |
|
| 169 |
```python
|
| 170 |
+
# Old way (still works)
|
| 171 |
+
tokenized = model.tokenizer(text, return_tensors="pt", ...)
|
| 172 |
+
tokenized["embed_mask"] = tokenized["attention_mask"].clone()
|
| 173 |
+
embeddings = model(tokenized)
|
| 174 |
+
|
| 175 |
+
# New way (recommended)
|
| 176 |
+
embeddings = model.encode_text([text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
```
|
| 178 |
|
| 179 |
## Evaluation
|