The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 4 new columns ({'curR', 'curL', 'velR', 'velL'}) and 6 missing columns ({'ay', 'wx', 'wy', 'ax', 'wz', 'az'}).
This happened while the csv dataset builder was generating data using
hf://datasets/phicoltan/BorealTC/ASPHALT/pro_00.csv (at revision 02b64ce23efae4c10ef017b50c0148992a7da4d4)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
time: double
curL: double
curR: double
velL: double
velR: double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 806
to
{'time': Value('float64'), 'wx': Value('float64'), 'wy': Value('float64'), 'wz': Value('float64'), 'ax': Value('float64'), 'ay': Value('float64'), 'az': Value('float64')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 4 new columns ({'curR', 'curL', 'velR', 'velL'}) and 6 missing columns ({'ay', 'wx', 'wy', 'ax', 'wz', 'az'}).
This happened while the csv dataset builder was generating data using
hf://datasets/phicoltan/BorealTC/ASPHALT/pro_00.csv (at revision 02b64ce23efae4c10ef017b50c0148992a7da4d4)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
time
float64 | wx
float64 | wy
float64 | wz
float64 | ax
float64 | ay
float64 | az
float64 |
|---|---|---|---|---|---|---|
0 | -0.005036 | 0.005379 | 0.006667 | -0.194197 | 1.946763 | 9.623114 |
0.01 | 0.000888 | 0.003693 | 0.003661 | -0.818433 | 1.419832 | 9.545463 |
0.02 | -0.001519 | -0.000742 | -0.000283 | -1.026685 | 1.943875 | 9.669002 |
0.03 | -0.001207 | -0.000813 | -0.006225 | -0.81574 | 1.604288 | 9.64826 |
0.04 | 0.002333 | -0.002882 | -0.002515 | -0.649156 | 1.733515 | 9.649873 |
0.05 | -0.000046 | -0.002291 | -0.005798 | -0.545361 | 1.945139 | 9.553964 |
0.06 | 0.006866 | -0.027423 | -0.035806 | -1.438086 | 1.200274 | 10.055572 |
0.07 | 0.006984 | -0.029273 | -0.070987 | 0.423233 | 0.788429 | 9.831299 |
0.08 | -0.058769 | -0.10703 | -0.033704 | -6.728067 | 10.982193 | 6.748576 |
0.09 | -0.186756 | -0.171678 | 0.030577 | -2.022819 | 10.068915 | 13.121988 |
0.1 | -0.127487 | -0.10512 | 0.008955 | 6.885168 | -1.90679 | 10.217899 |
0.11 | -0.134206 | 0.019785 | -0.074272 | 10.130749 | 0.856325 | 5.537858 |
0.12 | -0.07282 | 0.15083 | -0.153243 | 8.212408 | -3.701467 | 4.813115 |
0.13 | -0.064952 | 0.062516 | -0.216848 | -7.735671 | -0.814934 | 11.828878 |
0.14 | -0.130639 | 0.022084 | -0.232437 | 1.817445 | 8.918306 | 11.764264 |
0.15 | -0.228418 | 0.042175 | -0.241487 | 1.175695 | 6.299518 | 8.722502 |
0.16 | -0.206592 | 0.000167 | -0.217833 | 0.387678 | -0.991135 | 11.267067 |
0.17 | -0.126337 | -0.006717 | -0.200825 | 1.680363 | -3.737791 | 8.475799 |
0.18 | 0.007862 | -0.039433 | -0.196604 | -3.468028 | -12.685815 | 5.720053 |
0.19 | 0.131067 | -0.159725 | -0.131218 | -5.99791 | -5.511702 | 8.391776 |
0.2 | 0.063997 | -0.205912 | -0.032504 | -0.721628 | 9.878214 | 12.901116 |
0.21 | -0.105046 | -0.140577 | -0.00277 | 6.579488 | 14.806941 | 16.43772 |
0.22 | -0.119345 | -0.00951 | 0.000016 | 8.564438 | 3.367605 | 12.06336 |
0.23 | -0.066014 | 0.06222 | -0.028377 | 3.986666 | -1.908979 | 8.226488 |
0.24 | -0.008203 | 0.093701 | -0.074025 | -0.07945 | -2.550216 | 7.407126 |
0.25 | -0.000829 | 0.064958 | -0.097855 | -2.836483 | 2.15161 | 9.491695 |
0.26 | -0.064884 | 0.065646 | -0.115752 | 0.326686 | 6.344211 | 9.256618 |
0.27 | -0.080315 | 0.090839 | -0.122183 | 1.146302 | 0.791046 | 9.188935 |
0.28 | -0.067639 | 0.082164 | -0.135292 | -0.744054 | 0.254557 | 9.417025 |
0.29 | -0.05085 | 0.107442 | -0.126255 | 1.637956 | 0.023198 | 9.519658 |
0.3 | -0.048278 | 0.083939 | -0.1035 | -2.263558 | 1.272907 | 10.635439 |
0.31 | -0.035225 | 0.058592 | -0.077061 | -1.148873 | 1.83519 | 10.633448 |
0.32 | -0.057043 | 0.046936 | -0.044817 | -1.300775 | 3.45374 | 10.154193 |
0.33 | -0.030638 | 0.037283 | -0.013013 | 0.106165 | -0.309531 | 10.794245 |
0.34 | -0.005867 | 0.056925 | 0.01382 | 0.827427 | 0.909876 | 8.607322 |
0.35 | 0.00934 | 0.041652 | 0.012477 | -2.280895 | 0.039924 | 10.4799 |
0.36 | 0.004594 | 0.009048 | 0.020333 | -2.227146 | 2.517752 | 10.331395 |
0.37 | -0.028901 | 0.025018 | 0.009051 | -0.146406 | 4.485733 | 8.248149 |
0.38 | -0.028963 | 0.025795 | -0.007193 | -0.05062 | 0.210431 | 10.228913 |
0.39 | 0.022087 | 0.070561 | -0.033912 | 0.698968 | -1.904317 | 7.82299 |
0.4 | 0.004533 | 0.072609 | -0.058276 | -0.865043 | 3.338232 | 9.321778 |
0.41 | -0.034173 | 0.081721 | -0.071681 | -2.220093 | 3.455195 | 9.120335 |
0.42 | -0.038551 | 0.03319 | -0.071084 | -3.570568 | 1.996395 | 11.218265 |
0.43 | -0.037682 | 0.055531 | -0.078826 | -0.492912 | 1.054575 | 8.905672 |
0.44 | -0.001721 | 0.026727 | -0.069916 | -2.918128 | -0.788346 | 10.397125 |
0.45 | -0.007292 | 0.023175 | -0.071574 | -1.560815 | 2.128528 | 9.633654 |
0.46 | -0.002395 | 0.021726 | -0.070302 | -1.026172 | 1.355555 | 9.840459 |
0.47 | -0.04716 | 0.018752 | -0.069284 | -1.196491 | 4.782784 | 9.444565 |
0.48 | -0.027362 | 0.036137 | -0.07624 | 0.878397 | -0.432031 | 9.054001 |
0.49 | -0.0157 | 0.041675 | -0.08737 | -0.497911 | 0.116599 | 8.998187 |
0.5 | 0.01019 | 0.066682 | -0.118653 | 0.890729 | -1.505238 | 9.345745 |
0.51 | -0.016816 | 0.076363 | -0.1292 | -0.5955 | 4.40022 | 9.378198 |
0.52 | -0.049363 | 0.082605 | -0.1344 | -0.059082 | 3.222454 | 9.343799 |
0.53 | -0.045116 | 0.082192 | -0.14638 | -0.603408 | 1.668428 | 8.625121 |
0.54 | -0.067873 | 0.067366 | -0.161491 | -2.618427 | 3.353572 | 10.120367 |
0.55 | -0.062717 | 0.072065 | -0.157637 | 0.557952 | 0.624741 | 10.71957 |
0.56 | -0.031507 | 0.093108 | -0.155439 | -0.229339 | 0.040629 | 9.373677 |
0.57 | -0.036612 | 0.072646 | -0.14823 | -2.809581 | 1.943112 | 10.570713 |
0.58 | -0.034562 | 0.036781 | -0.126483 | -3.47311 | 1.894408 | 10.352934 |
0.59 | -0.042102 | -0.007842 | -0.127566 | -3.882472 | 2.071773 | 9.390358 |
0.6 | -0.031426 | 0.01454 | -0.104253 | 1.39226 | 0.4533 | 9.690307 |
0.61 | -0.01482 | 0.00705 | -0.089049 | -1.63735 | 0.676807 | 9.531416 |
0.62 | -0.012635 | 0.022348 | -0.068697 | 0.714359 | 1.573214 | 10.0655 |
0.63 | 0.005315 | -0.000764 | -0.050731 | -2.949447 | 0.858508 | 9.971696 |
0.64 | -0.024149 | -0.004067 | -0.042835 | 0.365825 | 3.7297 | 9.953034 |
0.65 | -0.018958 | -0.006849 | -0.050011 | -2.224876 | 0.862052 | 9.018178 |
0.66 | -0.012771 | -0.037144 | -0.038231 | -1.860119 | 0.714485 | 10.583891 |
0.67 | 0.005615 | -0.034165 | -0.030855 | -0.985355 | 1.096491 | 9.463772 |
0.68 | -0.005355 | -0.04731 | -0.022785 | -0.92889 | 1.781539 | 10.664857 |
0.69 | -0.001096 | -0.026291 | -0.009053 | 0.77593 | 1.68412 | 9.056373 |
0.7 | -0.010504 | -0.002886 | -0.007647 | 1.787906 | 1.737171 | 9.269685 |
0.71 | 0.005884 | 0.021013 | -0.006995 | 0.198059 | 0.819156 | 8.502734 |
0.72 | -0.002144 | -0.004873 | -0.015464 | -2.227006 | 1.843034 | 9.751133 |
0.73 | -0.008779 | -0.002162 | -0.017433 | -0.530017 | 2.333012 | 9.806019 |
0.74 | -0.023605 | -0.00923 | -0.023784 | -0.705134 | 2.893084 | 9.449477 |
0.75 | -0.031185 | 0.006954 | -0.025712 | 0.475813 | 2.116315 | 9.557183 |
0.76 | -0.016575 | -0.009565 | -0.041024 | -2.190904 | 1.642254 | 9.421041 |
0.77 | -0.039875 | 0.008637 | -0.059202 | 0.173873 | 2.503825 | 9.596549 |
0.78 | -0.033783 | 0.021462 | -0.076971 | -0.64539 | 0.996534 | 9.240179 |
0.79 | -0.046462 | 0.039773 | -0.097906 | -0.20027 | 1.717136 | 9.375441 |
0.8 | -0.041964 | 0.046718 | -0.103943 | -1.467435 | 0.507167 | 9.691248 |
0.81 | -0.021006 | 0.056746 | -0.106253 | 0.307429 | -0.780915 | 9.143008 |
0.82 | 0.018948 | 0.089097 | -0.11966 | 1.543293 | -2.413605 | 6.534098 |
0.83 | 0.04969 | 0.13923 | -0.130245 | 4.01595 | -3.233857 | 7.921338 |
0.84 | 0.128468 | 0.212814 | -0.156822 | 4.944276 | -6.865728 | 6.051507 |
0.85 | 0.135223 | 0.247577 | -0.191777 | 0.886133 | 1.709358 | 8.169094 |
0.86 | 0.071214 | 0.229859 | -0.218261 | -1.369533 | 4.813374 | 12.051317 |
0.87 | -0.005702 | 0.274464 | -0.195491 | 1.714361 | 7.696376 | 11.035569 |
0.88 | -0.016577 | 0.223986 | -0.187018 | -6.941943 | 2.557676 | 12.459359 |
0.89 | 0.013087 | 0.139292 | -0.160599 | -5.093451 | -0.300834 | 13.375373 |
0.9 | 0.100895 | 0.161073 | -0.138157 | 0.527389 | -3.897022 | 8.752222 |
0.91 | 0.080012 | 0.154368 | -0.096472 | -3.101412 | 4.561614 | 11.05973 |
0.92 | 0.040645 | 0.057497 | -0.056851 | -8.199314 | 7.494794 | 10.238399 |
0.93 | -0.045127 | 0.017895 | -0.039401 | -3.914872 | 5.480847 | 10.462237 |
0.94 | 0.061662 | 0.044779 | -0.018862 | 0.540774 | -5.452725 | 9.804301 |
0.95 | 0.09285 | 0.060393 | -0.027661 | -1.20179 | -0.365117 | 9.385028 |
0.96 | 0.066682 | 0.070321 | -0.045644 | -3.241212 | 3.624632 | 9.606017 |
0.97 | -0.012864 | -0.023542 | -0.077256 | -10.365555 | 8.433819 | 8.448149 |
0.98 | -0.055572 | -0.031652 | -0.098002 | -1.646454 | 1.514018 | 9.889575 |
0.99 | 0.06462 | 0.022909 | -0.08167 | 0.860605 | -7.451089 | 8.831938 |
Dataset Card for BorealTC
This dataset contains IMU and wheel timeseries of data recorded with a Husky A200 UGV. It was recorded on five different types of terrains: snow, ice, silty loam, asphalt, flooring.
Dataset Details
Dataset Description
Recorded with a Husky A200 wheeled UGV, BorealTC contains 116 min of Inertial Measurement Unit (IMU), motor current, and wheel odometry data, focusing on typical boreal forest terrains, notably snow, ice, and silty loam. The dataset also includes experiments on asphalt and flooring. All runs were recorded in Forêt Montmorency and on the main campus of Université Laval, Quebec City, Quebec, Canada.
- Curated by: Northern Robotics Laboratory, Université Laval, Québec, Canada
- License: CC0 1.0 Universal
Dataset Sources
- Repository: norlab-ulaval/BorealTC
- Paper: 10.1109/IROS58592.2024.10801407
- Page: BorealTC
Uses
This data was intended for terrain classification problems.
Direct Use
This dataset could be used as example data for sensor timeseries processing.
Dataset Structure
Each folder contains data for runs recorded on a specific terrain class. The data for each run is included in two CSV files: imu_*.csv and pro_*.csv:
borealtc
├── CLASS1
│ ├── imu_00.csv
│ ├── imu_01.csv
│ ├── ...
│ ├── pro_00.csv
│ ├── pro_01.csv
│ └── ...
└── CLASS2
├── imu_00.csv
├── imu_01.csv
├── ...
├── pro_00.csv
├── pro_01.csv
└── ...
Each imu file contains IMU-recorded rotational velocities and linear accelerations.
time,wx,wy,wz,ax,ay,az
0.0,0.0015195721884953,0.0040130227245162,-0.0070785057037968,1.4258426214785636,-0.0832771308374386,9.609228803438713
...
Each pro file contains motor currents and wheel velocities recorded by the wheel service of the Husky.
time,curL,curR,velL,velR
0.0,1.78,2.57,0.0236220472440944,0.0236220472440944
...
Dataset Creation
Curation Rationale
This dataset aims at collecting terrain data on terrains typical of boreal forests.
Data Collection and Processing
This dataset was recorded with a Husky A200 wheeled UGV on five terrains.
Citation
BibTeX:
@inproceedings{LaRocque2024,
title = {{Proprioception Is All You Need: Terrain Classification for Boreal Forests}},
url = {http://dx.doi.org/10.1109/IROS58592.2024.10801407},
doi = {10.1109/iros58592.2024.10801407},
booktitle = {2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
publisher = {IEEE},
author = {LaRocque, Damien and Guimont-Martin, William and Duclos, David-Alexandre and Giguère, Philippe and Pomerleau, Fran\c{c}ois},
year = {2024},
month = oct,
pages = {11686–11693}
}
Contributions
Thanks to @WillGuimont and @Asers387 for the help in curating this dataset.
- Downloads last month
- 10