Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 4 new columns ({'curR', 'curL', 'velR', 'velL'}) and 6 missing columns ({'ay', 'wx', 'wy', 'ax', 'wz', 'az'}).

This happened while the csv dataset builder was generating data using

hf://datasets/phicoltan/BorealTC/ASPHALT/pro_00.csv (at revision 02b64ce23efae4c10ef017b50c0148992a7da4d4)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              time: double
              curL: double
              curR: double
              velL: double
              velR: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 806
              to
              {'time': Value('float64'), 'wx': Value('float64'), 'wy': Value('float64'), 'wz': Value('float64'), 'ax': Value('float64'), 'ay': Value('float64'), 'az': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 4 new columns ({'curR', 'curL', 'velR', 'velL'}) and 6 missing columns ({'ay', 'wx', 'wy', 'ax', 'wz', 'az'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/phicoltan/BorealTC/ASPHALT/pro_00.csv (at revision 02b64ce23efae4c10ef017b50c0148992a7da4d4)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

time
float64
wx
float64
wy
float64
wz
float64
ax
float64
ay
float64
az
float64
0
-0.005036
0.005379
0.006667
-0.194197
1.946763
9.623114
0.01
0.000888
0.003693
0.003661
-0.818433
1.419832
9.545463
0.02
-0.001519
-0.000742
-0.000283
-1.026685
1.943875
9.669002
0.03
-0.001207
-0.000813
-0.006225
-0.81574
1.604288
9.64826
0.04
0.002333
-0.002882
-0.002515
-0.649156
1.733515
9.649873
0.05
-0.000046
-0.002291
-0.005798
-0.545361
1.945139
9.553964
0.06
0.006866
-0.027423
-0.035806
-1.438086
1.200274
10.055572
0.07
0.006984
-0.029273
-0.070987
0.423233
0.788429
9.831299
0.08
-0.058769
-0.10703
-0.033704
-6.728067
10.982193
6.748576
0.09
-0.186756
-0.171678
0.030577
-2.022819
10.068915
13.121988
0.1
-0.127487
-0.10512
0.008955
6.885168
-1.90679
10.217899
0.11
-0.134206
0.019785
-0.074272
10.130749
0.856325
5.537858
0.12
-0.07282
0.15083
-0.153243
8.212408
-3.701467
4.813115
0.13
-0.064952
0.062516
-0.216848
-7.735671
-0.814934
11.828878
0.14
-0.130639
0.022084
-0.232437
1.817445
8.918306
11.764264
0.15
-0.228418
0.042175
-0.241487
1.175695
6.299518
8.722502
0.16
-0.206592
0.000167
-0.217833
0.387678
-0.991135
11.267067
0.17
-0.126337
-0.006717
-0.200825
1.680363
-3.737791
8.475799
0.18
0.007862
-0.039433
-0.196604
-3.468028
-12.685815
5.720053
0.19
0.131067
-0.159725
-0.131218
-5.99791
-5.511702
8.391776
0.2
0.063997
-0.205912
-0.032504
-0.721628
9.878214
12.901116
0.21
-0.105046
-0.140577
-0.00277
6.579488
14.806941
16.43772
0.22
-0.119345
-0.00951
0.000016
8.564438
3.367605
12.06336
0.23
-0.066014
0.06222
-0.028377
3.986666
-1.908979
8.226488
0.24
-0.008203
0.093701
-0.074025
-0.07945
-2.550216
7.407126
0.25
-0.000829
0.064958
-0.097855
-2.836483
2.15161
9.491695
0.26
-0.064884
0.065646
-0.115752
0.326686
6.344211
9.256618
0.27
-0.080315
0.090839
-0.122183
1.146302
0.791046
9.188935
0.28
-0.067639
0.082164
-0.135292
-0.744054
0.254557
9.417025
0.29
-0.05085
0.107442
-0.126255
1.637956
0.023198
9.519658
0.3
-0.048278
0.083939
-0.1035
-2.263558
1.272907
10.635439
0.31
-0.035225
0.058592
-0.077061
-1.148873
1.83519
10.633448
0.32
-0.057043
0.046936
-0.044817
-1.300775
3.45374
10.154193
0.33
-0.030638
0.037283
-0.013013
0.106165
-0.309531
10.794245
0.34
-0.005867
0.056925
0.01382
0.827427
0.909876
8.607322
0.35
0.00934
0.041652
0.012477
-2.280895
0.039924
10.4799
0.36
0.004594
0.009048
0.020333
-2.227146
2.517752
10.331395
0.37
-0.028901
0.025018
0.009051
-0.146406
4.485733
8.248149
0.38
-0.028963
0.025795
-0.007193
-0.05062
0.210431
10.228913
0.39
0.022087
0.070561
-0.033912
0.698968
-1.904317
7.82299
0.4
0.004533
0.072609
-0.058276
-0.865043
3.338232
9.321778
0.41
-0.034173
0.081721
-0.071681
-2.220093
3.455195
9.120335
0.42
-0.038551
0.03319
-0.071084
-3.570568
1.996395
11.218265
0.43
-0.037682
0.055531
-0.078826
-0.492912
1.054575
8.905672
0.44
-0.001721
0.026727
-0.069916
-2.918128
-0.788346
10.397125
0.45
-0.007292
0.023175
-0.071574
-1.560815
2.128528
9.633654
0.46
-0.002395
0.021726
-0.070302
-1.026172
1.355555
9.840459
0.47
-0.04716
0.018752
-0.069284
-1.196491
4.782784
9.444565
0.48
-0.027362
0.036137
-0.07624
0.878397
-0.432031
9.054001
0.49
-0.0157
0.041675
-0.08737
-0.497911
0.116599
8.998187
0.5
0.01019
0.066682
-0.118653
0.890729
-1.505238
9.345745
0.51
-0.016816
0.076363
-0.1292
-0.5955
4.40022
9.378198
0.52
-0.049363
0.082605
-0.1344
-0.059082
3.222454
9.343799
0.53
-0.045116
0.082192
-0.14638
-0.603408
1.668428
8.625121
0.54
-0.067873
0.067366
-0.161491
-2.618427
3.353572
10.120367
0.55
-0.062717
0.072065
-0.157637
0.557952
0.624741
10.71957
0.56
-0.031507
0.093108
-0.155439
-0.229339
0.040629
9.373677
0.57
-0.036612
0.072646
-0.14823
-2.809581
1.943112
10.570713
0.58
-0.034562
0.036781
-0.126483
-3.47311
1.894408
10.352934
0.59
-0.042102
-0.007842
-0.127566
-3.882472
2.071773
9.390358
0.6
-0.031426
0.01454
-0.104253
1.39226
0.4533
9.690307
0.61
-0.01482
0.00705
-0.089049
-1.63735
0.676807
9.531416
0.62
-0.012635
0.022348
-0.068697
0.714359
1.573214
10.0655
0.63
0.005315
-0.000764
-0.050731
-2.949447
0.858508
9.971696
0.64
-0.024149
-0.004067
-0.042835
0.365825
3.7297
9.953034
0.65
-0.018958
-0.006849
-0.050011
-2.224876
0.862052
9.018178
0.66
-0.012771
-0.037144
-0.038231
-1.860119
0.714485
10.583891
0.67
0.005615
-0.034165
-0.030855
-0.985355
1.096491
9.463772
0.68
-0.005355
-0.04731
-0.022785
-0.92889
1.781539
10.664857
0.69
-0.001096
-0.026291
-0.009053
0.77593
1.68412
9.056373
0.7
-0.010504
-0.002886
-0.007647
1.787906
1.737171
9.269685
0.71
0.005884
0.021013
-0.006995
0.198059
0.819156
8.502734
0.72
-0.002144
-0.004873
-0.015464
-2.227006
1.843034
9.751133
0.73
-0.008779
-0.002162
-0.017433
-0.530017
2.333012
9.806019
0.74
-0.023605
-0.00923
-0.023784
-0.705134
2.893084
9.449477
0.75
-0.031185
0.006954
-0.025712
0.475813
2.116315
9.557183
0.76
-0.016575
-0.009565
-0.041024
-2.190904
1.642254
9.421041
0.77
-0.039875
0.008637
-0.059202
0.173873
2.503825
9.596549
0.78
-0.033783
0.021462
-0.076971
-0.64539
0.996534
9.240179
0.79
-0.046462
0.039773
-0.097906
-0.20027
1.717136
9.375441
0.8
-0.041964
0.046718
-0.103943
-1.467435
0.507167
9.691248
0.81
-0.021006
0.056746
-0.106253
0.307429
-0.780915
9.143008
0.82
0.018948
0.089097
-0.11966
1.543293
-2.413605
6.534098
0.83
0.04969
0.13923
-0.130245
4.01595
-3.233857
7.921338
0.84
0.128468
0.212814
-0.156822
4.944276
-6.865728
6.051507
0.85
0.135223
0.247577
-0.191777
0.886133
1.709358
8.169094
0.86
0.071214
0.229859
-0.218261
-1.369533
4.813374
12.051317
0.87
-0.005702
0.274464
-0.195491
1.714361
7.696376
11.035569
0.88
-0.016577
0.223986
-0.187018
-6.941943
2.557676
12.459359
0.89
0.013087
0.139292
-0.160599
-5.093451
-0.300834
13.375373
0.9
0.100895
0.161073
-0.138157
0.527389
-3.897022
8.752222
0.91
0.080012
0.154368
-0.096472
-3.101412
4.561614
11.05973
0.92
0.040645
0.057497
-0.056851
-8.199314
7.494794
10.238399
0.93
-0.045127
0.017895
-0.039401
-3.914872
5.480847
10.462237
0.94
0.061662
0.044779
-0.018862
0.540774
-5.452725
9.804301
0.95
0.09285
0.060393
-0.027661
-1.20179
-0.365117
9.385028
0.96
0.066682
0.070321
-0.045644
-3.241212
3.624632
9.606017
0.97
-0.012864
-0.023542
-0.077256
-10.365555
8.433819
8.448149
0.98
-0.055572
-0.031652
-0.098002
-1.646454
1.514018
9.889575
0.99
0.06462
0.022909
-0.08167
0.860605
-7.451089
8.831938
End of preview.

Dataset Card for BorealTC

This dataset contains IMU and wheel timeseries of data recorded with a Husky A200 UGV. It was recorded on five different types of terrains: snow, ice, silty loam, asphalt, flooring.

Dataset Details

Dataset Description

Recorded with a Husky A200 wheeled UGV, BorealTC contains 116 min of Inertial Measurement Unit (IMU), motor current, and wheel odometry data, focusing on typical boreal forest terrains, notably snow, ice, and silty loam. The dataset also includes experiments on asphalt and flooring. All runs were recorded in Forêt Montmorency and on the main campus of Université Laval, Quebec City, Quebec, Canada.

  • Curated by: Northern Robotics Laboratory, Université Laval, Québec, Canada
  • License: CC0 1.0 Universal

Dataset Sources

Uses

This data was intended for terrain classification problems.

Direct Use

This dataset could be used as example data for sensor timeseries processing.

Dataset Structure

Each folder contains data for runs recorded on a specific terrain class. The data for each run is included in two CSV files: imu_*.csv and pro_*.csv:

borealtc
├── CLASS1
│   ├── imu_00.csv
│   ├── imu_01.csv
│   ├── ...
│   ├── pro_00.csv
│   ├── pro_01.csv
│   └── ...
└── CLASS2
    ├── imu_00.csv
    ├── imu_01.csv
    ├── ...
    ├── pro_00.csv
    ├── pro_01.csv
    └── ...

Each imu file contains IMU-recorded rotational velocities and linear accelerations.

time,wx,wy,wz,ax,ay,az
0.0,0.0015195721884953,0.0040130227245162,-0.0070785057037968,1.4258426214785636,-0.0832771308374386,9.609228803438713
...

Each pro file contains motor currents and wheel velocities recorded by the wheel service of the Husky.

time,curL,curR,velL,velR
0.0,1.78,2.57,0.0236220472440944,0.0236220472440944
...

Dataset Creation

Curation Rationale

This dataset aims at collecting terrain data on terrains typical of boreal forests.

Data Collection and Processing

This dataset was recorded with a Husky A200 wheeled UGV on five terrains.

Citation

BibTeX:

@inproceedings{LaRocque2024,
  title     = {{Proprioception Is All You Need: Terrain Classification for Boreal Forests}},
  url       = {http://dx.doi.org/10.1109/IROS58592.2024.10801407},
  doi       = {10.1109/iros58592.2024.10801407},
  booktitle = {2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  publisher = {IEEE},
  author    = {LaRocque,  Damien and Guimont-Martin,  William and Duclos,  David-Alexandre and Giguère,  Philippe and Pomerleau,  Fran\c{c}ois},
  year      = {2024},
  month     = oct,
  pages     = {11686–11693}
}

Contributions

Thanks to @WillGuimont and @Asers387 for the help in curating this dataset.

Downloads last month
10