Datasets:
File size: 2,693 Bytes
d1323ce 1516dcc d1323ce 1516dcc d1323ce ff45329 1516dcc d1323ce ff45329 c40a4dc ff45329 d1323ce 1516dcc d1323ce 1516dcc d1323ce 1516dcc d1323ce 1516dcc 9d78844 1516dcc 9d78844 1516dcc 9d78844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
pretty_name: DDInter Inductive Reasoning
license: apache-2.0
annotations_creators:
- no-annotation
language:
- en
task_categories:
- question-answering
- text-generation
---
## 🔗 This dataset is part of the study:
**_K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction_**
- 📖 [Read the Paper](https://arxiv.org/abs/2502.13344)
- 💾 [GitHub Repository](https://github.com/rsinghlab/K-Paths)
# DDInter: Inductive Reasoning Dataset
DDInter provides drug–drug interaction (DDI) data labeled with three severity levels (`Major`, `Moderate`, `Minor`).
Each entry includes two drugs, an interaction label, drug descriptions, and structured/natural language representations of multi-hop reasoning paths between them.
The multi-hop paths were extracted from a biomedical knowledge graph (Hetionet) using K-Paths.
This dataset is useful for evaluating:
- Path-based biomedical reasoning
- Knowledge graph inference
- Inductive reasoning
## 💡 Columns
| Column | Description |
|---------------------|--------------------------------------------------|
| `drug1_db`, `drug2_db` | DrugBank IDs |
| `drug1_id`, `drug2_id` | Node IDs from the KG |
| `drug_pair` | Optional drug pair identifier |
| `drug1_name`, `drug2_name` | Names of each drug |
| `drug1_desc`, `drug2_desc` | Descriptions of each drug |
| `label` | Interaction severity (e.g., `Moderate`) |
| `label_idx` | Numeric version of the label |
| `all_paths`, `all_paths_str`, `path_str` | KG paths for reasoning |
## 📦 Example Record
```json
{
"drug1_name": "Mannitol",
"drug2_name": "Castor oil",
"label": "Moderate",
"path_str": "Mannitol (Compound) binds ABCB1 (Gene) and ABCG2 (Gene)..."
}
## 📥 How to Load with pandas
```python
import pandas as pd
splits = {
"train": "ddinter/train.json",
"test": "ddinter/test.json"
}
train = pd.read_json("hf://datasets/Tassy24/K-Paths-inductive-reasoning-ddinter/" + splits["train"], lines=True)
test = pd.read_json("hf://datasets/Tassy24/K-Paths-inductive-reasoning-ddinter/" + splits["test"], lines=True)
### 📜 Citation (BibTeX)
```bibtex
@article{abdullahi2025k,
title={K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction},
author={Abdullahi, Tassallah and Gemou, Ioanna and Nayak, Nihal V and Murtaza, Ghulam and Bach, Stephen H and Eickhoff, Carsten and Singh, Ritambhara},
journal={arXiv preprint arXiv:2502.13344},
year={2025}
} |