Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,46 +1,33 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
---
|
| 7 |
-
|
| 8 |
-
## 📄 `README.md` for **DDInter**
|
| 9 |
-
|
| 10 |
-
```markdown
|
| 11 |
-
---
|
| 12 |
pretty_name: DDInter Inductive Reasoning
|
|
|
|
| 13 |
annotations_creators:
|
| 14 |
- no-annotation
|
| 15 |
language:
|
| 16 |
- en
|
| 17 |
task_categories:
|
| 18 |
-
-
|
| 19 |
-
-
|
| 20 |
-
license: mit
|
| 21 |
---
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
DDInter provides drug-drug interaction data labeled with three severity levels (e.g., 'Major','Moderate' and 'Minor').
|
| 26 |
-
Each example includes descriptions for both drugs, interaction label, and multi-hop paths extracted from a biomedical knowledge graph (Hetionet).
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
| Column
|
| 33 |
-
|
| 34 |
-
| `drug1_db`, `drug2_db` | DrugBank IDs
|
| 35 |
-
| `drug1_id`, `drug2_id` | Node IDs |
|
| 36 |
-
| `drug_pair`
|
| 37 |
-
| `drug1_name`, `drug2_name` |
|
| 38 |
-
| `drug1_desc`, `drug2_desc` | Descriptions of each drug
|
| 39 |
-
| `label`
|
| 40 |
-
| `label_idx`
|
| 41 |
-
| `all_paths`, `all_paths_str`, `path_str` |
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
```json
|
| 46 |
{
|
|
@@ -50,4 +37,30 @@ This dataset supports research in biomedical relational inductive reasoning, DDI
|
|
| 50 |
"path_str": "Mannitol (Compound) binds ABCB1 (Gene) and ABCG2 (Gene)..."
|
| 51 |
}
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
pretty_name: DDInter Inductive Reasoning
|
| 3 |
+
license: apache-2.0
|
| 4 |
annotations_creators:
|
| 5 |
- no-annotation
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
task_categories:
|
| 9 |
+
- question-answering
|
| 10 |
+
- text-generation
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# DDInter: Inductive Reasoning Dataset
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
DDInter provides drug–drug interaction (DDI) data labeled with three severity levels (`Major`, `Moderate`, `Minor`). Each example includes drug descriptions, an interaction label, and multi-hop paths extracted from a biomedical knowledge graph (Hetionet).
|
| 16 |
|
| 17 |
+
## 💡 Columns
|
| 18 |
|
| 19 |
+
| Column | Description |
|
| 20 |
+
|---------------------|--------------------------------------------------|
|
| 21 |
+
| `drug1_db`, `drug2_db` | DrugBank IDs |
|
| 22 |
+
| `drug1_id`, `drug2_id` | Node IDs from the KG |
|
| 23 |
+
| `drug_pair` | Optional drug pair identifier |
|
| 24 |
+
| `drug1_name`, `drug2_name` | Names of each drug |
|
| 25 |
+
| `drug1_desc`, `drug2_desc` | Descriptions of each drug |
|
| 26 |
+
| `label` | Interaction severity (e.g., `Moderate`) |
|
| 27 |
+
| `label_idx` | Numeric version of the label |
|
| 28 |
+
| `all_paths`, `all_paths_str`, `path_str` | KG paths for reasoning |
|
| 29 |
|
| 30 |
+
## 📦 Example Record
|
| 31 |
|
| 32 |
```json
|
| 33 |
{
|
|
|
|
| 37 |
"path_str": "Mannitol (Compound) binds ABCB1 (Gene) and ABCG2 (Gene)..."
|
| 38 |
}
|
| 39 |
|
| 40 |
+
## 📥 How to Load with pandas
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
import pandas as pd
|
| 44 |
+
|
| 45 |
+
splits = {
|
| 46 |
+
"train": "ddinter/train.json",
|
| 47 |
+
"test": "ddinter/test.json"
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
df = pd.read_json("hf://datasets/Tassy24/K-Paths-inductive-reasoning-ddinter/" + splits["train"], lines=True)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
### 📜 **Citation (BibTeX)**
|
| 57 |
+
```markdown
|
| 58 |
+
## 📜 Citation
|
| 59 |
+
|
| 60 |
+
```bibtex
|
| 61 |
+
@article{abdullahi2025k,
|
| 62 |
+
title={K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction},
|
| 63 |
+
author={Abdullahi, Tassallah and Gemou, Ioanna and Nayak, Nihal V and Murtaza, Ghulam and Bach, Stephen H and Eickhoff, Carsten and Singh, Ritambhara},
|
| 64 |
+
journal={arXiv preprint arXiv:2502.13344},
|
| 65 |
+
year={2025}
|
| 66 |
+
}
|