JiantongChen's picture
Update README.md
d6a2ae1 verified
metadata
license: cc-by-nc-sa-4.0

IROS-2025-Challenge-Manip

Dataset Summary πŸ“–

This dataset contains the IROS Challenge - Manipulation Track benchmark, organized into pretrain, train, and validation splits.

  • Pretrain split: ~20,000 single pick-and-place trajectories, packaged into tar files (each containing ~1,000 trajectories).
  • Train split: task-specific demonstrations, with ~100 trajectories provided per task.
  • Validation split: includes the test-time scenes and object assets in USD format.

Each trajectory in the pretrain and train splits contains:

  • Multi-view video recordings (three perspectives: head-mounted camera and two wrist cameras)
  • Robot states (joint positions, gripper states, etc.)
  • Actions corresponding to the task execution

This dataset is designed to support pretraining, task-specific fine-tuning, and evaluation for robotic manipulation in the IROS Challenge setting.

Get started πŸ”₯

Download the Dataset

To download the full dataset, you can use the following code. If you encounter any issues, please refer to the official Hugging Face documentation.

from huggingface_hub import snapshot_download

dataset_path = snapshot_download("InternRobotics/IROS-2025-Challenge-Manip", repo_type="dataset")

Please execute this Python file to post-process the validation set.

cd IROS-2025-Challenge-Manip
python dataset_post_processing.py validation

Unzip the pretrain dataset

cd pretrain
for i in {1..20}; do
    echo "Extracting $i.tar.gz ..."
    tar -xzf "$i.tar.gz"
done

Dataset Structure

pretrain Folder hierarchy

pretrain
β”œβ”€β”€ 1.tar.gz
β”‚   └── 1/
β”‚       β”œβ”€β”€ data/
β”‚       β”œβ”€β”€ meta/
β”‚       └── videos/
β”œβ”€β”€ 2.tar.gz
β”‚   └── 2/
β”‚       β”œβ”€β”€ data/
β”‚       β”œβ”€β”€ meta/
β”‚       └── videos/
...
β”œβ”€β”€ 20.tar.gz
    └── 20/
        β”œβ”€β”€ data/
        β”œβ”€β”€ meta/
        └── videos/

train Folder hierarchy

train
β”œβ”€β”€ collect_three_glues
β”‚   β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ meta/
β”‚   └── videos/
β”œβ”€β”€ collect_two_alarm_clocks/
β”œβ”€β”€ collect_two_shoes/
β”œβ”€β”€ gather_three_teaboxes/
β”œβ”€β”€ make_sandwich/
β”œβ”€β”€ oil_painting_recognition/
β”œβ”€β”€ organize_colorful_cups/
β”œβ”€β”€ purchase_gift_box/
β”œβ”€β”€ put_drink_on_basket/
└── sort_waste/

validation Folder hierarchy

validation
β”œβ”€β”€ IROS_C_V3_Aloha_seen
β”‚   β”œβ”€β”€ collect_three_glues
β”‚   β”‚   β”œβ”€β”€ 000
β”‚   β”‚   β”‚   β”œβ”€β”€ meta_info.pkl
β”‚   β”‚   β”‚   β”œβ”€β”€ scene.usd
β”‚   β”‚   β”‚   └── SubUSDs -> ../SubUSDs
β”‚   β”‚   β”œβ”€β”€ 001/
β”‚   β”‚   β”œβ”€β”€ 002/
β”‚   β”‚   β”œβ”€β”€ 003/
β”‚   β”‚   β”œβ”€β”€ 004/
β”‚   β”‚   β”œβ”€β”€ 005/
β”‚   β”‚   β”œβ”€β”€ 006/
β”‚   β”‚   β”œβ”€β”€ 007/
β”‚   β”‚   β”œβ”€β”€ 008/
β”‚   β”‚   β”œβ”€β”€ 009/
β”‚   β”‚   └── SubUSDs
β”‚   β”‚       β”œβ”€β”€ materials/
β”‚   β”‚       └── textures/
β”‚   β”œβ”€β”€ collect_two_alarm_clocks/
β”‚   β”œβ”€β”€ collect_two_shoes/
β”‚   β”œβ”€β”€ gather_three_teaboxes/
β”‚   β”œβ”€β”€ make_sandwich/
β”‚   β”œβ”€β”€ oil_painting_recognition/
β”‚   β”œβ”€β”€ organize_colorful_cups/
β”‚   β”œβ”€β”€ purchase_gift_box/
β”‚   β”œβ”€β”€ put_drink_on_basket/
β”‚   └── sort_waste/
└── IROS_C_V3_Aloha_unseen
    β”œβ”€β”€ collect_three_glues/
    β”œβ”€β”€ collect_two_alarm_clocks/
    β”œβ”€β”€ collect_two_shoes/
    β”œβ”€β”€ gather_three_teaboxes/
    β”œβ”€β”€ make_sandwich/
    β”œβ”€β”€ oil_painting_recognition/
    β”œβ”€β”€ organize_colorful_cups/
    β”œβ”€β”€ purchase_gift_box/
    β”œβ”€β”€ put_drink_on_basket/
    └── sort_waste/

License and Citation

All the data and code within this repo are under CC BY-NC-SA 4.0. Please consider citing our project if it helps your research.

@misc{contributors2025internroboticsrepo,
  title={IROS-2025-Challenge-Manip Colosseum},
  author={IROS-2025-Challenge-Manip Colosseum contributors},
  howpublished={\url{https://github.com/internrobotics/IROS-2025-Challenge-Manip}},
  year={2025}
}