|
|
--- |
|
|
frameworks: |
|
|
- Pytorch |
|
|
license: Apache License 2.0 |
|
|
tasks: |
|
|
- text-to-image-synthesis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
base_model_relation: finetune |
|
|
base_model: |
|
|
- Qwen/Qwen-Image |
|
|
--- |
|
|
# Qwen-Image 全量蒸馏加速模型 |
|
|
|
|
|
 |
|
|
|
|
|
## 模型介绍 |
|
|
|
|
|
本模型是 [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) 的蒸馏加速版本。原版模型需要进行 40 步推理,且需要开启 classifier-free guidance (CFG),总计需要 80 次模型前向推理。蒸馏加速模型仅需要进行 15 步推理,且无需开启 CFG,总计需要 15 次模型前向推理,**实现约 5 倍的加速**。当然,可根据需要进一步减少推理步数,但生成效果会有一定损失。 |
|
|
|
|
|
训练框架基于 [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) 构建,训练数据是由原模型根据 [DiffusionDB](https://www.modelscope.cn/datasets/AI-ModelScope/diffusiondb) 中随机抽取的提示词生成的 1.6 万张图,训练程序在 8 * MI308X GPU 上运行了约 1 天。 |
|
|
|
|
|
## 效果展示 |
|
|
|
|
|
||原版模型|原版模型|加速模型| |
|
|
|-|-|-|-| |
|
|
|推理步数|40|15|15| |
|
|
|CFG scale|4|1|1| |
|
|
|前向推理次数|80|15|15| |
|
|
|样例1|||| |
|
|
|样例2|||| |
|
|
|样例3|||| |
|
|
|
|
|
## 推理代码 |
|
|
|
|
|
```shell |
|
|
git clone https://github.com/modelscope/DiffSynth-Studio.git |
|
|
cd DiffSynth-Studio |
|
|
pip install -e . |
|
|
``` |
|
|
|
|
|
```python |
|
|
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig |
|
|
import torch |
|
|
|
|
|
|
|
|
pipe = QwenImagePipeline.from_pretrained( |
|
|
torch_dtype=torch.bfloat16, |
|
|
device="cuda", |
|
|
model_configs=[ |
|
|
ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Distill-Full", origin_file_pattern="diffusion_pytorch_model*.safetensors"), |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), |
|
|
], |
|
|
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), |
|
|
) |
|
|
prompt = "精致肖像,水下少女,蓝裙飘逸,发丝轻扬,光影透澈,气泡环绕,面容恬静,细节精致,梦幻唯美。" |
|
|
image = pipe(prompt, seed=0, num_inference_steps=15, cfg_scale=1) |
|
|
image.save("image.jpg") |
|
|
``` |
|
|
|