File size: 3,010 Bytes
99ba876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
frameworks:
- Pytorch
license: Apache License 2.0
tasks:
- text-to-image-synthesis

#model-type:
##如 gpt、phi、llama、chatglm、baichuan 等
#- gpt

#domain:
##如 nlp、cv、audio、multi-modal
#- nlp

#language:
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
#- cn

#metrics:
##如 CIDEr、Blue、ROUGE 等
#- CIDEr

#tags:
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
#- pretrained

#tools:
##如 vllm、fastchat、llamacpp、AdaSeq 等
#- vllm
base_model_relation: finetune
base_model:
  - Qwen/Qwen-Image
---
# Qwen-Image 全量蒸馏加速模型

![](./assets/title.jpg)

## 模型介绍

本模型是 [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) 的蒸馏加速版本。原版模型需要进行 40 步推理,且需要开启 classifier-free guidance (CFG),总计需要 80 次模型前向推理。蒸馏加速模型仅需要进行 15 步推理,且无需开启 CFG,总计需要 15 次模型前向推理,**实现约 5 倍的加速**。当然,可根据需要进一步减少推理步数,但生成效果会有一定损失。

训练框架基于 [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) 构建,训练数据是由原模型根据 [DiffusionDB](https://www.modelscope.cn/datasets/AI-ModelScope/diffusiondb) 中随机抽取的提示词生成的 1.6 万张图,训练程序在 8 * MI308X GPU 上运行了约 1 天。

## 效果展示

||原版模型|原版模型|加速模型|
|-|-|-|-|
|推理步数|40|15|15|
|CFG scale|4|1|1|
|前向推理次数|80|15|15|
|样例1|![](./assets/image_1_full.jpg)|![](./assets/image_1_original.jpg)|![](./assets/image_1_ours.jpg)|
|样例2|![](./assets/image_2_full.jpg)|![](./assets/image_2_original.jpg)|![](./assets/image_2_ours.jpg)|
|样例3|![](./assets/image_3_full.jpg)|![](./assets/image_3_original.jpg)|![](./assets/image_3_ours.jpg)|

## 推理代码

```shell
git clone https://github.com/modelscope/DiffSynth-Studio.git  
cd DiffSynth-Studio
pip install -e .
```

```python
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig
import torch


pipe = QwenImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Distill-Full", origin_file_pattern="diffusion_pytorch_model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
    ],
    tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
prompt = "精致肖像,水下少女,蓝裙飘逸,发丝轻扬,光影透澈,气泡环绕,面容恬静,细节精致,梦幻唯美。"
image = pipe(prompt, seed=0, num_inference_steps=15, cfg_scale=1)
image.save("image.jpg")
```