metadata
			license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - uner_dan_ddt
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: uner_dan_ddt
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: uner_dan_ddt
          type: uner_dan_ddt
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.9018567639257294
          - name: Recall
            type: recall
            value: 0.8970976253298153
          - name: F1
            type: f1
            value: 0.8994708994708994
          - name: Accuracy
            type: accuracy
            value: 0.9939024390243902
uner_dan_ddt
This model is a fine-tuned version of xlm-roberta-large on the uner_dan_ddt dataset. It achieves the following results on the evaluation set:
- Loss: 0.0333
- Precision: 0.9019
- Recall: 0.8971
- F1: 0.8995
- Accuracy: 0.9939
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Framework versions
- Transformers 4.31.0
- Pytorch 1.10.1+cu113
- Datasets 2.14.4
- Tokenizers 0.13.3