Google SigLIP (512x512 resolution) model trained on COCO Captions
This is a sentence-transformers model finetuned from google/siglip-base-patch16-512 on the coco_captions dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/siglip-base-patch16-512
- Maximum Sequence Length: None tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'SiglipModel'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/google-siglip-base-coco")
# Run inference
sentences = [
'A large desk by a window is neatly arranged.',
'A long hot dog on a plate on a table.',
'A lady sitting at an enormous dining table with lots of food.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.1848, 0.1578],
# [0.1848, 1.0000, 0.5058],
# [0.1578, 0.5058, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Datasets:
coco-evalandcoco-test - Evaluated with
InformationRetrievalEvaluator
| Metric | coco-eval | coco-test |
|---|---|---|
| cosine_accuracy@1 | 0.755 | 0.754 |
| cosine_accuracy@3 | 0.944 | 0.935 |
| cosine_accuracy@5 | 0.975 | 0.976 |
| cosine_accuracy@10 | 0.992 | 0.992 |
| cosine_precision@1 | 0.755 | 0.754 |
| cosine_precision@3 | 0.3147 | 0.3117 |
| cosine_precision@5 | 0.195 | 0.1952 |
| cosine_precision@10 | 0.0992 | 0.0992 |
| cosine_recall@1 | 0.755 | 0.754 |
| cosine_recall@3 | 0.944 | 0.935 |
| cosine_recall@5 | 0.975 | 0.976 |
| cosine_recall@10 | 0.992 | 0.992 |
| cosine_ndcg@10 | 0.886 | 0.8849 |
| cosine_mrr@10 | 0.8505 | 0.849 |
| cosine_map@100 | 0.8508 | 0.8494 |
Training Details
Training Dataset
coco_captions
- Dataset: coco_captions at a2ed90d
- Size: 10,000 training samples
- Columns:
imageandcaption - Approximate statistics based on the first 1000 samples:
image caption type PIL.JpegImagePlugin.JpegImageFile string details - min: 28 characters
- mean: 52.56 characters
- max: 156 characters
- Samples:
image caption A woman wearing a net on her head cutting a cake.A woman cutting a large white sheet cake.A woman wearing a hair net cutting a large sheet cake. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
coco_captions
- Dataset: coco_captions at a2ed90d
- Size: 1,000 evaluation samples
- Columns:
imageandcaption - Approximate statistics based on the first 1000 samples:
image caption type PIL.JpegImagePlugin.JpegImageFile string details - min: 27 characters
- mean: 52.45 characters
- max: 151 characters
- Samples:
image caption A child holding a flowered umbrella and petting a yak.A young man holding an umbrella next to a herd of cattle.a young boy barefoot holding an umbrella touching the horn of a cow - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseuse_cpu: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Truefp16: Falsehalf_precision_backend: Nonebf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Nonegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_for_metrics: []eval_do_concat_batches: Truemp_parameters:auto_find_batch_size: Falsefull_determinism: Falseray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.2242 | - |
| 0.0112 | 7 | 2.6924 | - | - | - |
| 0.0224 | 14 | 3.1613 | - | - | - |
| 0.0336 | 21 | 3.1706 | - | - | - |
| 0.0448 | 28 | 2.5607 | - | - | - |
| 0.056 | 35 | 2.5325 | - | - | - |
| 0.0672 | 42 | 2.353 | - | - | - |
| 0.0784 | 49 | 1.5503 | - | - | - |
| 0.0896 | 56 | 1.5149 | - | - | - |
| 0.1008 | 63 | 1.404 | 0.8206 | 0.7171 | - |
| 0.112 | 70 | 1.0411 | - | - | - |
| 0.1232 | 77 | 0.748 | - | - | - |
| 0.1344 | 84 | 0.5821 | - | - | - |
| 0.1456 | 91 | 0.3756 | - | - | - |
| 0.1568 | 98 | 0.7135 | - | - | - |
| 0.168 | 105 | 0.5058 | - | - | - |
| 0.1792 | 112 | 0.4432 | - | - | - |
| 0.1904 | 119 | 0.428 | - | - | - |
| 0.2016 | 126 | 0.3416 | 0.3792 | 0.8132 | - |
| 0.2128 | 133 | 0.2572 | - | - | - |
| 0.224 | 140 | 0.1803 | - | - | - |
| 0.2352 | 147 | 0.2389 | - | - | - |
| 0.2464 | 154 | 0.3825 | - | - | - |
| 0.2576 | 161 | 0.2629 | - | - | - |
| 0.2688 | 168 | 0.4079 | - | - | - |
| 0.28 | 175 | 0.2106 | - | - | - |
| 0.2912 | 182 | 0.2089 | - | - | - |
| 0.3024 | 189 | 0.2215 | 0.2772 | 0.8425 | - |
| 0.3136 | 196 | 0.2142 | - | - | - |
| 0.3248 | 203 | 0.2895 | - | - | - |
| 0.336 | 210 | 0.2901 | - | - | - |
| 0.3472 | 217 | 0.2332 | - | - | - |
| 0.3584 | 224 | 0.2538 | - | - | - |
| 0.3696 | 231 | 0.1969 | - | - | - |
| 0.3808 | 238 | 0.2055 | - | - | - |
| 0.392 | 245 | 0.2135 | - | - | - |
| 0.4032 | 252 | 0.2177 | 0.2362 | 0.8513 | - |
| 0.4144 | 259 | 0.2228 | - | - | - |
| 0.4256 | 266 | 0.3378 | - | - | - |
| 0.4368 | 273 | 0.1516 | - | - | - |
| 0.448 | 280 | 0.1068 | - | - | - |
| 0.4592 | 287 | 0.1817 | - | - | - |
| 0.4704 | 294 | 0.1007 | - | - | - |
| 0.4816 | 301 | 0.1488 | - | - | - |
| 0.4928 | 308 | 0.1713 | - | - | - |
| 0.504 | 315 | 0.1963 | 0.2124 | 0.8633 | - |
| 0.5152 | 322 | 0.2033 | - | - | - |
| 0.5264 | 329 | 0.1321 | - | - | - |
| 0.5376 | 336 | 0.1642 | - | - | - |
| 0.5488 | 343 | 0.1352 | - | - | - |
| 0.56 | 350 | 0.1918 | - | - | - |
| 0.5712 | 357 | 0.1315 | - | - | - |
| 0.5824 | 364 | 0.2275 | - | - | - |
| 0.5936 | 371 | 0.0844 | - | - | - |
| 0.6048 | 378 | 0.0854 | 0.2052 | 0.8689 | - |
| 0.616 | 385 | 0.1572 | - | - | - |
| 0.6272 | 392 | 0.1111 | - | - | - |
| 0.6384 | 399 | 0.1958 | - | - | - |
| 0.6496 | 406 | 0.0896 | - | - | - |
| 0.6608 | 413 | 0.1532 | - | - | - |
| 0.672 | 420 | 0.1387 | - | - | - |
| 0.6832 | 427 | 0.0942 | - | - | - |
| 0.6944 | 434 | 0.1696 | - | - | - |
| 0.7056 | 441 | 0.1501 | 0.1898 | 0.8742 | - |
| 0.7168 | 448 | 0.143 | - | - | - |
| 0.728 | 455 | 0.1221 | - | - | - |
| 0.7392 | 462 | 0.1082 | - | - | - |
| 0.7504 | 469 | 0.1601 | - | - | - |
| 0.7616 | 476 | 0.1504 | - | - | - |
| 0.7728 | 483 | 0.1513 | - | - | - |
| 0.784 | 490 | 0.1108 | - | - | - |
| 0.7952 | 497 | 0.1086 | - | - | - |
| 0.8064 | 504 | 0.11 | 0.1689 | 0.8782 | - |
| 0.8176 | 511 | 0.1562 | - | - | - |
| 0.8288 | 518 | 0.1291 | - | - | - |
| 0.84 | 525 | 0.0687 | - | - | - |
| 0.8512 | 532 | 0.0966 | - | - | - |
| 0.8624 | 539 | 0.0977 | - | - | - |
| 0.8736 | 546 | 0.089 | - | - | - |
| 0.8848 | 553 | 0.0697 | - | - | - |
| 0.896 | 560 | 0.0561 | - | - | - |
| 0.9072 | 567 | 0.1078 | 0.1779 | 0.8860 | - |
| 0.9184 | 574 | 0.1425 | - | - | - |
| 0.9296 | 581 | 0.1273 | - | - | - |
| 0.9408 | 588 | 0.1215 | - | - | - |
| 0.952 | 595 | 0.1311 | - | - | - |
| 0.9632 | 602 | 0.0512 | - | - | - |
| 0.9744 | 609 | 0.0735 | - | - | - |
| 0.9856 | 616 | 0.1125 | - | - | - |
| 0.9968 | 623 | 0.1359 | - | - | - |
| -1 | -1 | - | - | - | 0.8849 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.054 kWh
- Carbon Emitted: 0.015 kg of CO2
- Hours Used: 0.169 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.2.0.dev0
- Transformers: 4.57.0.dev0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Model tree for tomaarsen/google-siglip-base-512-coco
Base model
google/siglip-base-patch16-512Dataset used to train tomaarsen/google-siglip-base-512-coco
Evaluation results
- Cosine Accuracy@1 on coco evalself-reported0.755
- Cosine Accuracy@3 on coco evalself-reported0.944
- Cosine Accuracy@5 on coco evalself-reported0.975
- Cosine Accuracy@10 on coco evalself-reported0.992
- Cosine Precision@1 on coco evalself-reported0.755
- Cosine Precision@3 on coco evalself-reported0.315
- Cosine Precision@5 on coco evalself-reported0.195
- Cosine Precision@10 on coco evalself-reported0.099
- Cosine Recall@1 on coco evalself-reported0.755
- Cosine Recall@3 on coco evalself-reported0.944