Spaces:
Running
on
Zero
Running
on
Zero
| # :computer: How to Train/Finetune Real-ESRGAN | |
| - [Train Real-ESRGAN](#train-real-esrgan) | |
| - [Overview](#overview) | |
| - [Dataset Preparation](#dataset-preparation) | |
| - [Train Real-ESRNet](#Train-Real-ESRNet) | |
| - [Train Real-ESRGAN](#Train-Real-ESRGAN) | |
| - [Finetune Real-ESRGAN on your own dataset](#Finetune-Real-ESRGAN-on-your-own-dataset) | |
| - [Generate degraded images on the fly](#Generate-degraded-images-on-the-fly) | |
| - [Use paired training data](#use-your-own-paired-data) | |
| [English](Training.md) **|** [简体中文](Training_CN.md) | |
| ## Train Real-ESRGAN | |
| ### Overview | |
| The training has been divided into two stages. These two stages have the same data synthesis process and training pipeline, except for the loss functions. Specifically, | |
| 1. We first train Real-ESRNet with L1 loss from the pre-trained model ESRGAN. | |
| 1. We then use the trained Real-ESRNet model as an initialization of the generator, and train the Real-ESRGAN with a combination of L1 loss, perceptual loss and GAN loss. | |
| ### Dataset Preparation | |
| We use DF2K (DIV2K and Flickr2K) + OST datasets for our training. Only HR images are required. <br> | |
| You can download from : | |
| 1. DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip | |
| 2. Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar | |
| 3. OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip | |
| Here are steps for data preparation. | |
| #### Step 1: [Optional] Generate multi-scale images | |
| For the DF2K dataset, we use a multi-scale strategy, *i.e.*, we downsample HR images to obtain several Ground-Truth images with different scales. <br> | |
| You can use the [scripts/generate_multiscale_DF2K.py](scripts/generate_multiscale_DF2K.py) script to generate multi-scale images. <br> | |
| Note that this step can be omitted if you just want to have a fast try. | |
| ```bash | |
| python scripts/generate_multiscale_DF2K.py --input datasets/DF2K/DF2K_HR --output datasets/DF2K/DF2K_multiscale | |
| ``` | |
| #### Step 2: [Optional] Crop to sub-images | |
| We then crop DF2K images into sub-images for faster IO and processing.<br> | |
| This step is optional if your IO is enough or your disk space is limited. | |
| You can use the [scripts/extract_subimages.py](scripts/extract_subimages.py) script. Here is the example: | |
| ```bash | |
| python scripts/extract_subimages.py --input datasets/DF2K/DF2K_multiscale --output datasets/DF2K/DF2K_multiscale_sub --crop_size 400 --step 200 | |
| ``` | |
| #### Step 3: Prepare a txt for meta information | |
| You need to prepare a txt file containing the image paths. The following are some examples in `meta_info_DF2Kmultiscale+OST_sub.txt` (As different users may have different sub-images partitions, this file is not suitable for your purpose and you need to prepare your own txt file): | |
| ```txt | |
| DF2K_HR_sub/000001_s001.png | |
| DF2K_HR_sub/000001_s002.png | |
| DF2K_HR_sub/000001_s003.png | |
| ... | |
| ``` | |
| You can use the [scripts/generate_meta_info.py](scripts/generate_meta_info.py) script to generate the txt file. <br> | |
| You can merge several folders into one meta_info txt. Here is the example: | |
| ```bash | |
| python scripts/generate_meta_info.py --input datasets/DF2K/DF2K_HR datasets/DF2K/DF2K_multiscale --root datasets/DF2K datasets/DF2K --meta_info datasets/DF2K/meta_info/meta_info_DF2Kmultiscale.txt | |
| ``` | |
| ### Train Real-ESRNet | |
| 1. Download pre-trained model [ESRGAN](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth) into `experiments/pretrained_models`. | |
| ```bash | |
| wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models | |
| ``` | |
| 1. Modify the content in the option file `options/train_realesrnet_x4plus.yml` accordingly: | |
| ```yml | |
| train: | |
| name: DF2K+OST | |
| type: RealESRGANDataset | |
| dataroot_gt: datasets/DF2K # modify to the root path of your folder | |
| meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt | |
| io_backend: | |
| type: disk | |
| ``` | |
| 1. If you want to perform validation during training, uncomment those lines and modify accordingly: | |
| ```yml | |
| # Uncomment these for validation | |
| # val: | |
| # name: validation | |
| # type: PairedImageDataset | |
| # dataroot_gt: path_to_gt | |
| # dataroot_lq: path_to_lq | |
| # io_backend: | |
| # type: disk | |
| ... | |
| # Uncomment these for validation | |
| # validation settings | |
| # val: | |
| # val_freq: !!float 5e3 | |
| # save_img: True | |
| # metrics: | |
| # psnr: # metric name, can be arbitrary | |
| # type: calculate_psnr | |
| # crop_border: 4 | |
| # test_y_channel: false | |
| ``` | |
| 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training: | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 \ | |
| python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug | |
| ``` | |
| Train with **a single GPU** in the *debug* mode: | |
| ```bash | |
| python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --debug | |
| ``` | |
| 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 \ | |
| python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume | |
| ``` | |
| Train with **a single GPU**: | |
| ```bash | |
| python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --auto_resume | |
| ``` | |
| ### Train Real-ESRGAN | |
| 1. After the training of Real-ESRNet, you now have the file `experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth`. If you need to specify the pre-trained path to other files, modify the `pretrain_network_g` value in the option file `train_realesrgan_x4plus.yml`. | |
| 1. Modify the option file `train_realesrgan_x4plus.yml` accordingly. Most modifications are similar to those listed above. | |
| 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training: | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 \ | |
| python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug | |
| ``` | |
| Train with **a single GPU** in the *debug* mode: | |
| ```bash | |
| python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --debug | |
| ``` | |
| 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 \ | |
| python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume | |
| ``` | |
| Train with **a single GPU**: | |
| ```bash | |
| python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --auto_resume | |
| ``` | |
| ## Finetune Real-ESRGAN on your own dataset | |
| You can finetune Real-ESRGAN on your own dataset. Typically, the fine-tuning process can be divided into two cases: | |
| 1. [Generate degraded images on the fly](#Generate-degraded-images-on-the-fly) | |
| 1. [Use your own **paired** data](#Use-paired-training-data) | |
| ### Generate degraded images on the fly | |
| Only high-resolution images are required. The low-quality images are generated with the degradation process described in Real-ESRGAN during training. | |
| **1. Prepare dataset** | |
| See [this section](#dataset-preparation) for more details. | |
| **2. Download pre-trained models** | |
| Download pre-trained models into `experiments/pretrained_models`. | |
| - *RealESRGAN_x4plus.pth*: | |
| ```bash | |
| wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models | |
| ``` | |
| - *RealESRGAN_x4plus_netD.pth*: | |
| ```bash | |
| wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models | |
| ``` | |
| **3. Finetune** | |
| Modify [options/finetune_realesrgan_x4plus.yml](options/finetune_realesrgan_x4plus.yml) accordingly, especially the `datasets` part: | |
| ```yml | |
| train: | |
| name: DF2K+OST | |
| type: RealESRGANDataset | |
| dataroot_gt: datasets/DF2K # modify to the root path of your folder | |
| meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt | |
| io_backend: | |
| type: disk | |
| ``` | |
| We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 \ | |
| python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --launcher pytorch --auto_resume | |
| ``` | |
| Finetune with **a single GPU**: | |
| ```bash | |
| python realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --auto_resume | |
| ``` | |
| ### Use your own paired data | |
| You can also finetune RealESRGAN with your own paired data. It is more similar to fine-tuning ESRGAN. | |
| **1. Prepare dataset** | |
| Assume that you already have two folders: | |
| - **gt folder** (Ground-truth, high-resolution images): *datasets/DF2K/DIV2K_train_HR_sub* | |
| - **lq folder** (Low quality, low-resolution images): *datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub* | |
| Then, you can prepare the meta_info txt file using the script [scripts/generate_meta_info_pairdata.py](scripts/generate_meta_info_pairdata.py): | |
| ```bash | |
| python scripts/generate_meta_info_pairdata.py --input datasets/DF2K/DIV2K_train_HR_sub datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub --meta_info datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt | |
| ``` | |
| **2. Download pre-trained models** | |
| Download pre-trained models into `experiments/pretrained_models`. | |
| - *RealESRGAN_x4plus.pth* | |
| ```bash | |
| wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models | |
| ``` | |
| - *RealESRGAN_x4plus_netD.pth* | |
| ```bash | |
| wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models | |
| ``` | |
| **3. Finetune** | |
| Modify [options/finetune_realesrgan_x4plus_pairdata.yml](options/finetune_realesrgan_x4plus_pairdata.yml) accordingly, especially the `datasets` part: | |
| ```yml | |
| train: | |
| name: DIV2K | |
| type: RealESRGANPairedDataset | |
| dataroot_gt: datasets/DF2K # modify to the root path of your folder | |
| dataroot_lq: datasets/DF2K # modify to the root path of your folder | |
| meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt # modify to your own generate meta info txt | |
| io_backend: | |
| type: disk | |
| ``` | |
| We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 \ | |
| python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --launcher pytorch --auto_resume | |
| ``` | |
| Finetune with **a single GPU**: | |
| ```bash | |
| python realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --auto_resume | |
| ``` | |