Spaces:
Runtime error
Runtime error
| ## Run YOLO-World (Quantized) on TF-Lite | |
| - [x] Export YOLO-World to TFLite with INT8 Quantization. | |
| - [x] TFLite demo | |
| ### Priliminaries | |
| ```bash | |
| pip install onnxruntime onnx onnx-simplifier | |
| pip install tensorflow==2.15.1 | |
| ``` | |
| See [onnx2tf](https://github.com/PINTO0309/onnx2tf) for more details about export TFLite models. | |
| The contributor of `onnx2tf` is very nice! | |
| ### Export TFLite INT8 Quantization models | |
| Please use **Reparameterized YOLO-World** for TFLite!! | |
| 1. Prepare the ONNX model | |
| Please export the ONNX model without `postprocessing` and `bbox_decoder`, just add `--without-bbox-decoder`! | |
| `bbox_decoder` is not supported for INT8 quantization, please take care! | |
| ```bash | |
| PYTHONPATH=./ python deploy/export_onnx.py path/to/config path/to/weights --custom-text path/to/customtexts --opset 11 --without-bbox-decoder | |
| ``` | |
| 2. Generate the calibration samples | |
| Using 100 COCO images is suggested to create a simple calibration dataset for quantization. | |
| ```python | |
| import os | |
| import random | |
| from PIL import Image, ImageOps | |
| import cv2 | |
| import glob | |
| import numpy as np | |
| root = "data/coco/val2017/" | |
| image_list = os.listdir(root) | |
| image_list = [os.path.join(root, f) for f in image_list] | |
| random.shuffle(image_list) | |
| img_datas = [] | |
| for idx, file in enumerate(image_list[:100]): | |
| image = Image.open(file).convert('RGB') | |
| # Get sample input data as a numpy array in a method of your choosing. | |
| img_width, img_height = image.size | |
| size = max(img_width, img_height) | |
| image = ImageOps.pad(image, (size, size), method=Image.BILINEAR) | |
| image = image.resize((640, 640), Image.BILINEAR) | |
| tensor_image = np.asarray(image).astype(np.float32) | |
| tensor_image /= 255.0 | |
| tensor_image = np.expand_dims(tensor_image, axis=0) | |
| img_datas.append(tensor_image) | |
| calib_datas = np.vstack(img_datas) | |
| print(f'calib_datas.shape: {calib_datas.shape}') | |
| np.save(file='tflite_calibration_data_100_images_640.npy', arr=calib_datas) | |
| ``` | |
| 3. Export ONNX to TFLite using `onnx2tf` | |
| ```bash | |
| onnx2tf -i [ONNX] -o [OUTPUT] -oiqt -cind "images" "tflite_calibration_data_100_images_640.npy" "[[[[0.,0.,0.]]]]" "[[[[1.,1.,1.]]]]" -onimc "scores" "bboxes" --verbosity debug | |
| ``` | |
| We provide a sample TFLite INT8 model: [yolo_world_x_coco_zeroshot_rep_integer_quant.tflite](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_x_coco_zeroshot_rep_integer_quant.tflite) | |
| ### Inference using TFLite | |
| ```bash | |
| python deploy/tflite_demo.py path/to/tflite path/to/images path/to/texts | |
| ``` |