sdxl-image / app.py
oimoyu's picture
Update app.py
93aa66d verified
raw
history blame
30.9 kB
import os
import random
import sys
import json
import argparse
import contextlib
from typing import Sequence, Mapping, Any, Union
import torch
import numpy as np
import time
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
import datetime
import uuid
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
token = os.environ.get("HF_TOKEN")
hf_hub_download(repo_id="oimoyu/model", filename="chkp_test_base.safetensors", local_dir="models/checkpoints")
hf_hub_download(repo_id="oimoyu/model", filename="lora1.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="oimoyu/model", filename="lora2.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="oimoyu/model", filename="lora3.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="oimoyu/model", filename="lora4.safetensors", local_dir="models/loras")
@spaces.GPU(duration=60)
def infer(prompt_input, negative_prompt_input, seed, width, height, guidance_scale, num_inference_steps):
safe_execute(cleanup_output)
start_time = time.time()
consume_time_list = []
if seed <=0 :
seed = random.randint(1, 2**64)
with torch.inference_mode():
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
sample_width, sample_height = clamp_size(width, height)
# sample_width, sample_height = width, height
emptylatentimage_5 = emptylatentimage.generate(
width=sample_width, height=sample_height, batch_size=1
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_6 = cliptextencode.encode(
# text=prompt_input,
# clip=LOADED_CLIP,
# )
# consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_7 = cliptextencode.encode(
# text=negative_prompt_input,
# clip=LOADED_CLIP,
# )
cliptextencode_6 = smz_cliptextencode.encode(
text=prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=True,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6, # Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
cliptextencode_7 = smz_cliptextencode.encode(
text=negative_prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=False,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6,# Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_23 = ksampler_efficient.sample(
seed=seed,
steps=num_inference_steps,
cfg=guidance_scale,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
preview_method="auto",
vae_decode="true",
model=LOADED_MODEL,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
latent_image=get_value_at_index(emptylatentimage_5, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
if width <= 1024 and height <= 1024:
image_tensor = get_value_at_index(ksampler_efficient_23, 5)[0]
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
# pillow_img = Image.fromarray(image_uint8)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time = time.time() - start_time
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
return image_uint8
imagescaleby_17 = imagescaleby.upscale(
upscale_method="lanczos",
scale_by=2.0,
image=get_value_at_index(ksampler_efficient_23, 5),
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
vaeencode_26 = vaeencode.encode(
pixels=get_value_at_index(imagescaleby_17, 0),
vae=LOADED_VAE,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_24 = ksampler_efficient.sample(
seed=seed,
# steps=num_inference_steps,
steps=16,
cfg=guidance_scale,
sampler_name="euler",
scheduler="normal",
denoise=0.33,
preview_method="auto",
vae_decode="true",
model=LOADED_WAVESPEED_MODEL,
positive=get_value_at_index(ksampler_efficient_23, 1),
negative=get_value_at_index(ksampler_efficient_23, 2),
latent_image=get_value_at_index(vaeencode_26, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
image_tensor = get_value_at_index(ksampler_efficient_24, 5)[0]
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
# pillow_img = Image.fromarray(image_uint8)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time = time.time() - start_time
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
return image_uint8
def clamp_image_size(image, max_size=1024):
width, height = image.size
# 如果图片尺寸都小于等于max_size,使用原尺寸
if width > max_size or height > max_size:
# 计算缩放比例
if width > height:
# 宽度较大,以宽度为准
new_width = max_size
new_height = int(height * max_size / width)
else:
# 高度较大,以高度为准
new_height = max_size
new_width = int(width * max_size / height)
# 使用LANCZOS重采样算法进行高质量缩放
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# 确保是RGB模式
if image.mode != 'RGB':
image = image.convert('RGB')
# 转换为numpy数组,然后转为PyTorch tensor
img_array = np.array(image, dtype=np.float32) / 255.0
# 转为PyTorch tensor
img_tensor = torch.from_numpy(img_array).unsqueeze(0)
return img_tensor
def string_to_pil(image):
if image.startswith('data:image'):
# 移除前缀
base64_str = image.split(',', 1)[1]
# 解码base64
image_data = base64.b64decode(base64_str)
# 转换为PIL图像
image_stream = io.BytesIO(image_data)
pil_image = Image.open(image_stream)
else:
# 处理文件路径
pil_image = Image.open(image)
return pil_image
@spaces.GPU(duration=60)
def infer_i2i(prompt_input, negative_prompt_input, image, seed, denoise_strength, guidance_scale, num_inference_steps):
safe_execute(cleanup_output)
start_time = time.time()
consume_time_list = []
# image = string_to_pil(image)
if seed <= 0:
seed = random.randint(1, 2**64)
with torch.inference_mode():
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# 钳制图片
image = clamp_image_size(image)
emptylatentimage_5 = vaeencode.encode(
pixels=image,
vae=LOADED_VAE,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_6 = cliptextencode.encode(
# text=prompt_input,
# clip=LOADED_CLIP,
# )
# consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_7 = cliptextencode.encode(
# text=negative_prompt_input,
# clip=LOADED_CLIP,
# )
cliptextencode_6 = smz_cliptextencode.encode(
text=prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=True,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6, # Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
cliptextencode_7 = smz_cliptextencode.encode(
text=negative_prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=False,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6,# Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_23 = ksampler_efficient.sample(
seed=seed,
steps=num_inference_steps,
cfg=guidance_scale,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=denoise_strength,
preview_method="auto",
vae_decode="true",
model=LOADED_MODEL,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
latent_image=get_value_at_index(emptylatentimage_5, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
imagescaleby_17 = imagescaleby.upscale(
upscale_method="lanczos",
scale_by=2.0,
image=get_value_at_index(ksampler_efficient_23, 5),
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
vaeencode_26 = vaeencode.encode(
pixels=get_value_at_index(imagescaleby_17, 0),
vae=LOADED_VAE,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_24 = ksampler_efficient.sample(
seed=seed,
# steps=num_inference_steps,
steps=16,
cfg=guidance_scale,
sampler_name="euler",
scheduler="normal",
denoise=0.33,
preview_method="auto",
vae_decode="true",
model=get_value_at_index(applyfbcacheonmodel_16, 0),
positive=get_value_at_index(ksampler_efficient_23, 1),
negative=get_value_at_index(ksampler_efficient_23, 2),
latent_image=get_value_at_index(vaeencode_26, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
image_tensor = get_value_at_index(ksampler_efficient_24, 5)[0]
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
# pillow_img = Image.fromarray(image_uint8)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time = time.time() - start_time
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
return image_uint8
# @spaces.GPU(duration=60)
def infer_wd14tagger(image):
if image is None:
return "Please upload an image first."
with torch.inference_mode():
image_tensor = pil_to_tensor(image)
wd14taggerpysssss_10 = wd14taggerpysssss.tag(
model="wd-v1-4-moat-tagger-v2",
threshold=0.35,
character_threshold=0.85,
replace_underscore=False,
trailing_comma=False,
exclude_tags="",
image=image_tensor,
)
wd14_result = get_value_at_index(wd14taggerpysssss_10, 0)
result = ""
if wd14_result:
result = wd14_result[0]
return result
def get_script_directory():
script_path = os.path.abspath(__file__)
script_dir = os.path.dirname(script_path)
return script_dir
def safe_execute(func, *args, **kwargs):
try:
result = func(*args, **kwargs)
return result
except Exception as e:
print(f"Error executing {func.__name__}: {e}")
return None
def cleanup_output():
trigger_probability = 0.015
keep_minutes = 30
min_files_threshold = 100 # at least keep n files
if random.random() > trigger_probability:
return None
# print(list(os.walk("/tmp/gradio")))
for output_dir in ["/tmp/gradio", os.path.join(get_script_directory(), "temp")]:
try:
if not os.path.exists(output_dir):
continue
all_files = []
for root, dirs, files in os.walk(output_dir): # traverse all subdirectories
for filename in files:
filepath = os.path.join(root, filename)
all_files.append(filepath)
total_files = len(all_files)
if total_files < min_files_threshold: # skip if too few files
return
current_time = time.time()
time_threshold = current_time - (keep_minutes * 60)
deleted_count = 0
deleted_files = []
for file_path in all_files:
try:
file_mtime = os.path.getctime(file_path)
filename = os.path.basename(file_path)
if file_mtime < time_threshold: # delete if older than threshold
os.remove(file_path)
deleted_files.append(filename)
deleted_count += 1
except Exception as e:
pass # ignore individual file errors
# Remove empty directories (bottom-up traversal)
deleted_dirs = 0
for root, dirs, files in os.walk(output_dir, topdown=False):
if root == output_dir.rstrip('/'): # Skip the root output directory itself
continue
try:
# Try to remove directory if it's empty
if not os.listdir(root): # Check if directory is empty
os.rmdir(root)
deleted_dirs += 1
except Exception as e:
pass # ignore directory removal errors
print(f"cleanup done: dir: {output_dir}, deleted {deleted_count} files, {deleted_dirs} empty directories")
except Exception as e:
print(f"cleanup error:dir: {output_dir}, error: {str(e)}")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
# print(10000000000000000)
try:
# print(2000000000000000)
return obj[index]
except KeyError:
# print(2000000000000000)
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
import __main__
if getattr(__main__, "__file__", None) is None:
__main__.__file__ = os.path.join(comfyui_path, "main.py")
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes(init_custom_nodes=True)
from fastapi import HTTPException, Request
expected_secret = os.environ.get("API_SECRET", "")
print(expected_secret)
def dep(request: Request):
secret = request.headers.get("X-Secret")
if expected_secret and secret != expected_secret:
raise HTTPException(
status_code=401,
detail="Invalid secret",
headers={"WWW-Authenticate": "X-Secret"}
)
return {"authenticated": True}
def pil_to_tensor(image):
if image.mode != 'RGB':
image = image.convert('RGB')
img_array = np.array(image, dtype=np.float32) / 255.0
img_tensor = torch.from_numpy(img_array).unsqueeze(0)
return img_tensor
def clamp_size(width, height, max_size=1024):
if width <= max_size and height <= max_size:
return width, height
if width > height:
scale = max_size / width
return max_size, int(height * scale)
else:
scale = max_size / height
return int(width * scale), max_size
PROMPT_DATA = json.loads("{}")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
from nodes import NODE_CLASS_MAPPINGS
import_custom_nodes()
smz_cliptextencode = NODE_CLASS_MAPPINGS["smZ CLIPTextEncode"]()
imagescaleby = NODE_CLASS_MAPPINGS["ImageScaleBy"]()
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
applyfbcacheonmodel = NODE_CLASS_MAPPINGS["ApplyFBCacheOnModel"]()
ksampler_efficient = NODE_CLASS_MAPPINGS["KSampler (Efficient)"]()
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="chkp_test_base.safetensors"
)
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
clipsetlastlayer = NODE_CLASS_MAPPINGS["CLIPSetLastLayer"]()
clipsetlastlayer_14 = clipsetlastlayer.set_last_layer(
stop_at_clip_layer=-2, clip=get_value_at_index(checkpointloadersimple_4, 1)
)
# loraloader = NODE_CLASS_MAPPINGS["LoraLoader"]()
# loraloader_11 = loraloader.load_lora(
# lora_name="lora1.safetensors",
# strength_model=0.3,
# strength_clip=0.3,
# model=get_value_at_index(checkpointloadersimple_4, 0),
# clip=get_value_at_index(clipsetlastlayer_14, 0),
# )
# loraloader_12 = loraloader.load_lora(
# lora_name="lora2.safetensors",
# strength_model=0.5,
# strength_clip=0.5,
# model=get_value_at_index(loraloader_11, 0),
# clip=get_value_at_index(loraloader_11, 1),
# )
# loraloader_12_5 = loraloader.load_lora(
# lora_name="lora4.safetensors",
# strength_model=0.25,
# strength_clip=0.25,
# model=get_value_at_index(loraloader_12, 0),
# clip=get_value_at_index(loraloader_12, 1),
# )
# loraloader_13 = loraloader.load_lora(
# lora_name="lora3.safetensors",
# strength_model=0.5,
# strength_clip=0.5,
# model=get_value_at_index(loraloader_12_5, 0),
# clip=get_value_at_index(loraloader_12_5, 1),
# )
# applyfbcacheonmodel_16 = applyfbcacheonmodel.patch(
# object_to_patch="diffusion_model",
# residual_diff_threshold=0.2,
# start=0.7,
# end=1,
# max_consecutive_cache_hits=-1,
# model=get_value_at_index(loraloader_13, 0),
# )
applyfbcacheonmodel_16 = applyfbcacheonmodel.patch(
object_to_patch="diffusion_model",
residual_diff_threshold=0.2,
start=0.7,
end=1,
max_consecutive_cache_hits=-1,
model=get_value_at_index(checkpointloadersimple_4, 0),
)
wd14taggerpysssss = NODE_CLASS_MAPPINGS["WD14Tagger|pysssss"]()
from comfy import model_management
# model_loaders = [checkpointloadersimple_4, loraloader_11, loraloader_12, loraloader_12_5, loraloader_13, applyfbcacheonmodel_16]
model_loaders = [checkpointloadersimple_4, applyfbcacheonmodel_16]
# model_loaders = [applyfbcacheonmodel_16]
model_management.load_models_gpu([
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
])
# LOADED_MODEL = get_value_at_index(loraloader_13, 0)
# LOADED_CLIP = get_value_at_index(loraloader_13, 1)
LOADED_MODEL = get_value_at_index(checkpointloadersimple_4, 0)
LOADED_CLIP = get_value_at_index(checkpointloadersimple_4, 1)
LOADED_VAE = get_value_at_index(checkpointloadersimple_4, 2)
LOADED_WAVESPEED_MODEL = get_value_at_index(applyfbcacheonmodel_16, 0)
default_concurrency_limit = 2
if __name__ == "__main__":
# 开启 Gradio 程序
with gr.Blocks() as app:
# 添加标题
gr.Markdown("# Your dream wifi generator")
with gr.Tabs():
# Text-to-Image Tab
with gr.TabItem("Text-to-Image"):
with gr.Row():
# 添加输入
prompt_input = gr.Textbox(
label="Prompt", placeholder="Enter your prompt here...",
value="1boy"
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt", placeholder="Enter your negative prompt here...",
value="nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
)
use_negative_prompt = gr.Checkbox(label="Is use negative", value=True, visible=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=1024,
step=64,
value=832,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1024,
step=64,
value=832,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Step",
minimum=1,
maximum=50,
step=1,
value=28,
)
# 生成按钮
generate_btn = gr.Button("Generate")
with gr.Column():
# 输出图像
output_image = gr.Image(label="Generated Image", show_label=False, format="png")
# 当点击按钮时,它将触发"generate_image"函数,该函数带有相应的输入
# 并且输出是一张图像
generate_btn.click(
fn=infer,
inputs=[prompt_input, negative_prompt_input, seed, width, height, guidance_scale, num_inference_steps],
outputs=[output_image],
concurrency_id="inference_queue"
)
# Image-to-Image Tab
with gr.TabItem("Image-to-Image"):
with gr.Row():
# 添加输入
i2i_prompt_input = gr.Textbox(
label="Prompt", placeholder="Enter your prompt here...",
value="1boy"
)
i2i_negative_prompt_input = gr.Textbox(
label="Negative Prompt", placeholder="Enter your negative prompt here...",
value="nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
)
input_image_component = gr.Image(type="pil", label="Input Image")
i2i_use_negative_prompt = gr.Checkbox(label="Is use negative", value=True, visible=False)
i2i_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
# Denoise strength for I2I
denoise_strength = gr.Slider(
label="Denoise Strength",
minimum=0,
maximum=1.0,
step=0.05,
value=0.75,
info="Higher values will change the image more"
)
i2i_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
i2i_num_inference_steps = gr.Slider(
label="Step",
minimum=1,
maximum=50,
step=1,
value=28,
)
# 生成按钮
i2i_generate_btn = gr.Button("Generate")
with gr.Column():
# 输出图像
i2i_output_image = gr.Image(label="Generated Image", show_label=False, format="png")
i2i_generate_btn.click(
fn=infer_i2i,
inputs=[i2i_prompt_input, i2i_negative_prompt_input, input_image_component, i2i_seed, denoise_strength, i2i_guidance_scale, i2i_num_inference_steps],
outputs=[i2i_output_image],
concurrency_id="inference_queue"
)
# WD14-Tagger
with gr.TabItem("WD14-Tagger"):
with gr.Row():
input_image = gr.Image(type="pil", label="Extract Image Tags",)
generate_btn = gr.Button("Generate Tags")
with gr.Column():
output_tags = gr.TextArea(label="Generated Tags", show_label=True)
generate_btn.click(
fn=infer_wd14tagger,
inputs=[input_image],
outputs=[output_tags],
concurrency_id="inference_queue"
)
app.queue(
default_concurrency_limit=default_concurrency_limit, # 默认并发数,可以被单独事件设置覆盖
max_size=15 # 全局队列大小,不能被覆盖
)
app.launch(server_port=7860, auth_dependency=dep,server_name="0.0.0.0", share=False )