Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,910 Bytes
9ab8b5f f560fa9 9ab8b5f e66de1c 9ab8b5f 93aa66d 9ab8b5f d206a05 9ab8b5f d206a05 9ab8b5f f560fa9 9ab8b5f 5a985c2 9ab8b5f 5a985c2 9ab8b5f e06e2e2 9ab8b5f 5a985c2 9ab8b5f b7ac530 9ab8b5f 5a985c2 9ab8b5f 5a985c2 9ab8b5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
import os
import random
import sys
import json
import argparse
import contextlib
from typing import Sequence, Mapping, Any, Union
import torch
import numpy as np
import time
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
import datetime
import uuid
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
token = os.environ.get("HF_TOKEN")
hf_hub_download(repo_id="oimoyu/model", filename="chkp_test_base.safetensors", local_dir="models/checkpoints")
hf_hub_download(repo_id="oimoyu/model", filename="lora1.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="oimoyu/model", filename="lora2.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="oimoyu/model", filename="lora3.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="oimoyu/model", filename="lora4.safetensors", local_dir="models/loras")
@spaces.GPU(duration=60)
def infer(prompt_input, negative_prompt_input, seed, width, height, guidance_scale, num_inference_steps):
safe_execute(cleanup_output)
start_time = time.time()
consume_time_list = []
if seed <=0 :
seed = random.randint(1, 2**64)
with torch.inference_mode():
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
sample_width, sample_height = clamp_size(width, height)
# sample_width, sample_height = width, height
emptylatentimage_5 = emptylatentimage.generate(
width=sample_width, height=sample_height, batch_size=1
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_6 = cliptextencode.encode(
# text=prompt_input,
# clip=LOADED_CLIP,
# )
# consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_7 = cliptextencode.encode(
# text=negative_prompt_input,
# clip=LOADED_CLIP,
# )
cliptextencode_6 = smz_cliptextencode.encode(
text=prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=True,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6, # Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
cliptextencode_7 = smz_cliptextencode.encode(
text=negative_prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=False,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6,# Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_23 = ksampler_efficient.sample(
seed=seed,
steps=num_inference_steps,
cfg=guidance_scale,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
preview_method="auto",
vae_decode="true",
model=LOADED_MODEL,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
latent_image=get_value_at_index(emptylatentimage_5, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
if width <= 1024 and height <= 1024:
image_tensor = get_value_at_index(ksampler_efficient_23, 5)[0]
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
# pillow_img = Image.fromarray(image_uint8)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time = time.time() - start_time
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
return image_uint8
imagescaleby_17 = imagescaleby.upscale(
upscale_method="lanczos",
scale_by=2.0,
image=get_value_at_index(ksampler_efficient_23, 5),
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
vaeencode_26 = vaeencode.encode(
pixels=get_value_at_index(imagescaleby_17, 0),
vae=LOADED_VAE,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_24 = ksampler_efficient.sample(
seed=seed,
# steps=num_inference_steps,
steps=16,
cfg=guidance_scale,
sampler_name="euler",
scheduler="normal",
denoise=0.33,
preview_method="auto",
vae_decode="true",
model=LOADED_WAVESPEED_MODEL,
positive=get_value_at_index(ksampler_efficient_23, 1),
negative=get_value_at_index(ksampler_efficient_23, 2),
latent_image=get_value_at_index(vaeencode_26, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
image_tensor = get_value_at_index(ksampler_efficient_24, 5)[0]
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
# pillow_img = Image.fromarray(image_uint8)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time = time.time() - start_time
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
return image_uint8
def clamp_image_size(image, max_size=1024):
width, height = image.size
# 如果图片尺寸都小于等于max_size,使用原尺寸
if width > max_size or height > max_size:
# 计算缩放比例
if width > height:
# 宽度较大,以宽度为准
new_width = max_size
new_height = int(height * max_size / width)
else:
# 高度较大,以高度为准
new_height = max_size
new_width = int(width * max_size / height)
# 使用LANCZOS重采样算法进行高质量缩放
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# 确保是RGB模式
if image.mode != 'RGB':
image = image.convert('RGB')
# 转换为numpy数组,然后转为PyTorch tensor
img_array = np.array(image, dtype=np.float32) / 255.0
# 转为PyTorch tensor
img_tensor = torch.from_numpy(img_array).unsqueeze(0)
return img_tensor
def string_to_pil(image):
if image.startswith('data:image'):
# 移除前缀
base64_str = image.split(',', 1)[1]
# 解码base64
image_data = base64.b64decode(base64_str)
# 转换为PIL图像
image_stream = io.BytesIO(image_data)
pil_image = Image.open(image_stream)
else:
# 处理文件路径
pil_image = Image.open(image)
return pil_image
@spaces.GPU(duration=60)
def infer_i2i(prompt_input, negative_prompt_input, image, seed, denoise_strength, guidance_scale, num_inference_steps):
safe_execute(cleanup_output)
start_time = time.time()
consume_time_list = []
# image = string_to_pil(image)
if seed <= 0:
seed = random.randint(1, 2**64)
with torch.inference_mode():
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# 钳制图片
image = clamp_image_size(image)
emptylatentimage_5 = vaeencode.encode(
pixels=image,
vae=LOADED_VAE,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_6 = cliptextencode.encode(
# text=prompt_input,
# clip=LOADED_CLIP,
# )
# consume_time_list.append(time.time() - start_time - sum(consume_time_list))
# cliptextencode_7 = cliptextencode.encode(
# text=negative_prompt_input,
# clip=LOADED_CLIP,
# )
cliptextencode_6 = smz_cliptextencode.encode(
text=prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=True,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6, # Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
cliptextencode_7 = smz_cliptextencode.encode(
text=negative_prompt_input,
parser="A1111",
mean_normalization=True,
multi_conditioning=False,
use_old_emphasis_implementation=False,
with_SDXL=False, # if use two text encode
ascore=6,# Aesthetic Score
width=1024, # unkonw
height=1024, # unkonw
crop_w=0, # unkonw
crop_h=0, # unkonw
target_width=1024, # unkonw
target_height=1024, # unkonw
text_g="", # Global Prompt
text_l="", # Local Prompt
smZ_steps=1, # unkonw
clip=LOADED_CLIP,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_23 = ksampler_efficient.sample(
seed=seed,
steps=num_inference_steps,
cfg=guidance_scale,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=denoise_strength,
preview_method="auto",
vae_decode="true",
model=LOADED_MODEL,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
latent_image=get_value_at_index(emptylatentimage_5, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
imagescaleby_17 = imagescaleby.upscale(
upscale_method="lanczos",
scale_by=2.0,
image=get_value_at_index(ksampler_efficient_23, 5),
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
vaeencode_26 = vaeencode.encode(
pixels=get_value_at_index(imagescaleby_17, 0),
vae=LOADED_VAE,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
ksampler_efficient_24 = ksampler_efficient.sample(
seed=seed,
# steps=num_inference_steps,
steps=16,
cfg=guidance_scale,
sampler_name="euler",
scheduler="normal",
denoise=0.33,
preview_method="auto",
vae_decode="true",
model=get_value_at_index(applyfbcacheonmodel_16, 0),
positive=get_value_at_index(ksampler_efficient_23, 1),
negative=get_value_at_index(ksampler_efficient_23, 2),
latent_image=get_value_at_index(vaeencode_26, 0),
optional_vae=LOADED_VAE,
prompt=PROMPT_DATA,
)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
image_tensor = get_value_at_index(ksampler_efficient_24, 5)[0]
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
# pillow_img = Image.fromarray(image_uint8)
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
consume_time = time.time() - start_time
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
return image_uint8
# @spaces.GPU(duration=60)
def infer_wd14tagger(image):
if image is None:
return "Please upload an image first."
with torch.inference_mode():
image_tensor = pil_to_tensor(image)
wd14taggerpysssss_10 = wd14taggerpysssss.tag(
model="wd-v1-4-moat-tagger-v2",
threshold=0.35,
character_threshold=0.85,
replace_underscore=False,
trailing_comma=False,
exclude_tags="",
image=image_tensor,
)
wd14_result = get_value_at_index(wd14taggerpysssss_10, 0)
result = ""
if wd14_result:
result = wd14_result[0]
return result
def get_script_directory():
script_path = os.path.abspath(__file__)
script_dir = os.path.dirname(script_path)
return script_dir
def safe_execute(func, *args, **kwargs):
try:
result = func(*args, **kwargs)
return result
except Exception as e:
print(f"Error executing {func.__name__}: {e}")
return None
def cleanup_output():
trigger_probability = 0.015
keep_minutes = 30
min_files_threshold = 100 # at least keep n files
if random.random() > trigger_probability:
return None
# print(list(os.walk("/tmp/gradio")))
for output_dir in ["/tmp/gradio", os.path.join(get_script_directory(), "temp")]:
try:
if not os.path.exists(output_dir):
continue
all_files = []
for root, dirs, files in os.walk(output_dir): # traverse all subdirectories
for filename in files:
filepath = os.path.join(root, filename)
all_files.append(filepath)
total_files = len(all_files)
if total_files < min_files_threshold: # skip if too few files
return
current_time = time.time()
time_threshold = current_time - (keep_minutes * 60)
deleted_count = 0
deleted_files = []
for file_path in all_files:
try:
file_mtime = os.path.getctime(file_path)
filename = os.path.basename(file_path)
if file_mtime < time_threshold: # delete if older than threshold
os.remove(file_path)
deleted_files.append(filename)
deleted_count += 1
except Exception as e:
pass # ignore individual file errors
# Remove empty directories (bottom-up traversal)
deleted_dirs = 0
for root, dirs, files in os.walk(output_dir, topdown=False):
if root == output_dir.rstrip('/'): # Skip the root output directory itself
continue
try:
# Try to remove directory if it's empty
if not os.listdir(root): # Check if directory is empty
os.rmdir(root)
deleted_dirs += 1
except Exception as e:
pass # ignore directory removal errors
print(f"cleanup done: dir: {output_dir}, deleted {deleted_count} files, {deleted_dirs} empty directories")
except Exception as e:
print(f"cleanup error:dir: {output_dir}, error: {str(e)}")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
# print(10000000000000000)
try:
# print(2000000000000000)
return obj[index]
except KeyError:
# print(2000000000000000)
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
import __main__
if getattr(__main__, "__file__", None) is None:
__main__.__file__ = os.path.join(comfyui_path, "main.py")
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes(init_custom_nodes=True)
from fastapi import HTTPException, Request
expected_secret = os.environ.get("API_SECRET", "")
print(expected_secret)
def dep(request: Request):
secret = request.headers.get("X-Secret")
if expected_secret and secret != expected_secret:
raise HTTPException(
status_code=401,
detail="Invalid secret",
headers={"WWW-Authenticate": "X-Secret"}
)
return {"authenticated": True}
def pil_to_tensor(image):
if image.mode != 'RGB':
image = image.convert('RGB')
img_array = np.array(image, dtype=np.float32) / 255.0
img_tensor = torch.from_numpy(img_array).unsqueeze(0)
return img_tensor
def clamp_size(width, height, max_size=1024):
if width <= max_size and height <= max_size:
return width, height
if width > height:
scale = max_size / width
return max_size, int(height * scale)
else:
scale = max_size / height
return int(width * scale), max_size
PROMPT_DATA = json.loads("{}")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
from nodes import NODE_CLASS_MAPPINGS
import_custom_nodes()
smz_cliptextencode = NODE_CLASS_MAPPINGS["smZ CLIPTextEncode"]()
imagescaleby = NODE_CLASS_MAPPINGS["ImageScaleBy"]()
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
applyfbcacheonmodel = NODE_CLASS_MAPPINGS["ApplyFBCacheOnModel"]()
ksampler_efficient = NODE_CLASS_MAPPINGS["KSampler (Efficient)"]()
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="chkp_test_base.safetensors"
)
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
clipsetlastlayer = NODE_CLASS_MAPPINGS["CLIPSetLastLayer"]()
clipsetlastlayer_14 = clipsetlastlayer.set_last_layer(
stop_at_clip_layer=-2, clip=get_value_at_index(checkpointloadersimple_4, 1)
)
# loraloader = NODE_CLASS_MAPPINGS["LoraLoader"]()
# loraloader_11 = loraloader.load_lora(
# lora_name="lora1.safetensors",
# strength_model=0.3,
# strength_clip=0.3,
# model=get_value_at_index(checkpointloadersimple_4, 0),
# clip=get_value_at_index(clipsetlastlayer_14, 0),
# )
# loraloader_12 = loraloader.load_lora(
# lora_name="lora2.safetensors",
# strength_model=0.5,
# strength_clip=0.5,
# model=get_value_at_index(loraloader_11, 0),
# clip=get_value_at_index(loraloader_11, 1),
# )
# loraloader_12_5 = loraloader.load_lora(
# lora_name="lora4.safetensors",
# strength_model=0.25,
# strength_clip=0.25,
# model=get_value_at_index(loraloader_12, 0),
# clip=get_value_at_index(loraloader_12, 1),
# )
# loraloader_13 = loraloader.load_lora(
# lora_name="lora3.safetensors",
# strength_model=0.5,
# strength_clip=0.5,
# model=get_value_at_index(loraloader_12_5, 0),
# clip=get_value_at_index(loraloader_12_5, 1),
# )
# applyfbcacheonmodel_16 = applyfbcacheonmodel.patch(
# object_to_patch="diffusion_model",
# residual_diff_threshold=0.2,
# start=0.7,
# end=1,
# max_consecutive_cache_hits=-1,
# model=get_value_at_index(loraloader_13, 0),
# )
applyfbcacheonmodel_16 = applyfbcacheonmodel.patch(
object_to_patch="diffusion_model",
residual_diff_threshold=0.2,
start=0.7,
end=1,
max_consecutive_cache_hits=-1,
model=get_value_at_index(checkpointloadersimple_4, 0),
)
wd14taggerpysssss = NODE_CLASS_MAPPINGS["WD14Tagger|pysssss"]()
from comfy import model_management
# model_loaders = [checkpointloadersimple_4, loraloader_11, loraloader_12, loraloader_12_5, loraloader_13, applyfbcacheonmodel_16]
model_loaders = [checkpointloadersimple_4, applyfbcacheonmodel_16]
# model_loaders = [applyfbcacheonmodel_16]
model_management.load_models_gpu([
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
])
# LOADED_MODEL = get_value_at_index(loraloader_13, 0)
# LOADED_CLIP = get_value_at_index(loraloader_13, 1)
LOADED_MODEL = get_value_at_index(checkpointloadersimple_4, 0)
LOADED_CLIP = get_value_at_index(checkpointloadersimple_4, 1)
LOADED_VAE = get_value_at_index(checkpointloadersimple_4, 2)
LOADED_WAVESPEED_MODEL = get_value_at_index(applyfbcacheonmodel_16, 0)
default_concurrency_limit = 2
if __name__ == "__main__":
# 开启 Gradio 程序
with gr.Blocks() as app:
# 添加标题
gr.Markdown("# Your dream wifi generator")
with gr.Tabs():
# Text-to-Image Tab
with gr.TabItem("Text-to-Image"):
with gr.Row():
# 添加输入
prompt_input = gr.Textbox(
label="Prompt", placeholder="Enter your prompt here...",
value="1boy"
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt", placeholder="Enter your negative prompt here...",
value="nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
)
use_negative_prompt = gr.Checkbox(label="Is use negative", value=True, visible=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=1024,
step=64,
value=832,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1024,
step=64,
value=832,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Step",
minimum=1,
maximum=50,
step=1,
value=28,
)
# 生成按钮
generate_btn = gr.Button("Generate")
with gr.Column():
# 输出图像
output_image = gr.Image(label="Generated Image", show_label=False, format="png")
# 当点击按钮时,它将触发"generate_image"函数,该函数带有相应的输入
# 并且输出是一张图像
generate_btn.click(
fn=infer,
inputs=[prompt_input, negative_prompt_input, seed, width, height, guidance_scale, num_inference_steps],
outputs=[output_image],
concurrency_id="inference_queue"
)
# Image-to-Image Tab
with gr.TabItem("Image-to-Image"):
with gr.Row():
# 添加输入
i2i_prompt_input = gr.Textbox(
label="Prompt", placeholder="Enter your prompt here...",
value="1boy"
)
i2i_negative_prompt_input = gr.Textbox(
label="Negative Prompt", placeholder="Enter your negative prompt here...",
value="nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
)
input_image_component = gr.Image(type="pil", label="Input Image")
i2i_use_negative_prompt = gr.Checkbox(label="Is use negative", value=True, visible=False)
i2i_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
# Denoise strength for I2I
denoise_strength = gr.Slider(
label="Denoise Strength",
minimum=0,
maximum=1.0,
step=0.05,
value=0.75,
info="Higher values will change the image more"
)
i2i_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
i2i_num_inference_steps = gr.Slider(
label="Step",
minimum=1,
maximum=50,
step=1,
value=28,
)
# 生成按钮
i2i_generate_btn = gr.Button("Generate")
with gr.Column():
# 输出图像
i2i_output_image = gr.Image(label="Generated Image", show_label=False, format="png")
i2i_generate_btn.click(
fn=infer_i2i,
inputs=[i2i_prompt_input, i2i_negative_prompt_input, input_image_component, i2i_seed, denoise_strength, i2i_guidance_scale, i2i_num_inference_steps],
outputs=[i2i_output_image],
concurrency_id="inference_queue"
)
# WD14-Tagger
with gr.TabItem("WD14-Tagger"):
with gr.Row():
input_image = gr.Image(type="pil", label="Extract Image Tags",)
generate_btn = gr.Button("Generate Tags")
with gr.Column():
output_tags = gr.TextArea(label="Generated Tags", show_label=True)
generate_btn.click(
fn=infer_wd14tagger,
inputs=[input_image],
outputs=[output_tags],
concurrency_id="inference_queue"
)
app.queue(
default_concurrency_limit=default_concurrency_limit, # 默认并发数,可以被单独事件设置覆盖
max_size=15 # 全局队列大小,不能被覆盖
)
app.launch(server_port=7860, auth_dependency=dep,server_name="0.0.0.0", share=False )
|