File size: 6,548 Bytes
1f30c42
d789727
8fb170c
 
d789727
1f30c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d789727
1f30c42
 
 
d789727
 
1f30c42
d789727
 
1f30c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d789727
1f30c42
 
54547cf
1f30c42
 
 
54547cf
1f30c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d789727
 
 
 
54547cf
1f30c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb170c
1f30c42
 
 
 
 
1ea390e
1f30c42
 
 
d789727
1f30c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1eee1
1f30c42
 
 
d789727
 
1f30c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d789727
1f30c42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
 

 
import gradio as gr
import torch
import soundfile as sf
import os
import numpy as np
import noisereduce as nr
from typing import Optional, Iterator
import torch.nn as nn
from transformers import AutoTokenizer, VitsModel  # لازم تتأكد أنك مستوردهم
from concurrent.futures import ThreadPoolExecutor, as_completed
# اختيار الجهاز (CPU أو GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("✅ Running on:", device)

 
token=os.environ.get("key_")
models = {}

# فلتر الضوضاء
def remove_noise_nr(audio_data, sr=16000):
    reduced_noise = nr.reduce_noise(y=audio_data, hop_length=256, sr=sr)
    return reduced_noise


def _inference_forward_stream(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        speaker_embeddings: torch.Tensor = None,
        chunk_size: int = 32,
        is_streaming: bool = True
    ):
    import torch.nn as nn

    padding_mask = attention_mask.unsqueeze(-1).float() if attention_mask is not None else torch.ones_like(input_ids).unsqueeze(-1).float()

    text_encoder_output = self.text_encoder(
        input_ids=input_ids,
        padding_mask=padding_mask,
        attention_mask=attention_mask
    )

    hidden_states = text_encoder_output[0]
    hidden_states = hidden_states.transpose(1, 2)
    input_padding_mask = padding_mask.transpose(1, 2)

    prior_means = text_encoder_output[1]
    prior_log_variances = text_encoder_output[2]

    # حساب المدة
    if self.config.use_stochastic_duration_prediction:
        log_duration = self.duration_predictor(
            hidden_states, input_padding_mask, speaker_embeddings, reverse=True, noise_scale=self.noise_scale_duration
        )
    else:
        log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)

    length_scale = 1.0 / self.speaking_rate
    duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
    predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()

    indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
    output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
    output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)

    attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
    batch_size, _, output_length, input_length = attn_mask.shape
    cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
    indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
    valid_indices = indices.unsqueeze(0) < cum_duration
    valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
    padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
    attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask

    prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
    prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)

    prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
    latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
    spectrogram = latents * output_padding_mask

    if is_streaming:
        for i in range(0, spectrogram.size(-1), chunk_size):
            with torch.no_grad():
                yield spectrogram[:, :, i: i + chunk_size]

    else:

        yield spectrogram


def get_model(name_model):
    global models
    if name_model in models:
        tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
        return models[name_model], tokenizer

    models[name_model] = VitsModel.from_pretrained(name_model, token=token)
    models[name_model].decoder.apply_weight_norm()
    for flow in models[name_model].flow.flows:
        torch.nn.utils.weight_norm(flow.conv_pre)
        torch.nn.utils.weight_norm(flow.conv_post)

    tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
    return models[name_model], tokenizer

TXT = """السلام عليكم ورحمة الله وبركاته يا هلا وسهلا ومراحب بالغالي اخباركم طيبين ان شاء الله ارحبوا على العين والراس"""
def process_chunk(chunk_id, spectrogram_chunk, speaker_embeddings, decoder):
    with torch.no_grad():
        wav = decoder(torch.tensor(spectrogram_chunk), speaker_embeddings)
    wav = wav.squeeze().cpu().numpy()
    file_path = f"audio_chunks/chunk_{chunk_id}.wav"
    sf.write(file_path, wav, samplerate=16000)
    return file_path


def modelspeech(text=TXT, name_model="wasmdashai/vits-ar-sa-huba-v2", speaking_rate=0.9):
    os.makedirs("audio_chunks", exist_ok=True)
    model, tokenizer = get_model(name_model) 
    model.config.sampling_rate=16000
    #text = ask_ai(text)
    inputs = tokenizer(text, return_tensors="pt").to(device) 
     

    model.speaking_rate = speaking_rate
    chunk_files = []

    with ThreadPoolExecutor(max_workers=8) as executor:
        futures = []
        chunk_id = 0

        for spectrogram_chunk in _inference_forward_stream(
            model,
            input_ids=inputs.input_ids,
            attention_mask=inputs.attention_mask,
            speaker_embeddings=None,
            is_streaming=True,
            chunk_size=32
        ):
            futures.append(executor.submit(process_chunk, chunk_id, spectrogram_chunk, None, model.decoder))
            chunk_id += 1

        for future in as_completed(futures):
            chunk_files.append(future.result())


 
    chunk_files.sort(key=lambda x: int(x.split("_")[-1].split(".")[0]))

 
    all_audio = np.concatenate([sf.read(f)[0] for f in chunk_files])
    

    return (model.config.sampling_rate, remove_noise_nr(all_audio))


model_choices = gr.Dropdown(
    choices=[
        "wasmdashai/vits-ar-sa-huba-v1",
        "wasmdashai/vits-ar-sa-huba-v2",
        "wasmdashai/vits-ar-sa-A",
        "wasmdashai/vits-ar-ye-sa",
        "wasmdashai/vits-ar-sa-M-v2",
        'wasmdashai/vits-en-v1'
    ],
    label="اختر النموذج",
    value="wasmdashai/vits-ar-sa-huba-v2",
)

demo = gr.Interface(
    fn=modelspeech,
    inputs=["text", model_choices, gr.Slider(0.1, 1, step=0.1, value=0.8)],
    outputs=[gr.Audio(autoplay=True)]
)

demo.queue()
demo.launch(debug=True)