Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -589,41 +589,43 @@ dir_model='wasmdashai/vits-ar-huba-fine'
|
|
| 589 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 590 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 591 |
|
| 592 |
-
for i in range(10000):
|
| 593 |
-
# model.train(True)
|
| 594 |
-
print(f'clcye epochs ={i}')
|
| 595 |
-
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
| 596 |
-
# model.setMfA(monotonic_align.maximum_path)
|
| 597 |
-
#dir_model_save=dir_model+'/vend'
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
trainer_to_cuda(model,
|
| 601 |
-
ctrain_datasets = ctrain_datasets,
|
| 602 |
-
eval_dataset = eval_dataset,
|
| 603 |
-
full_generation_dataset = ctrain_datasets[0][0],
|
| 604 |
-
feature_extractor = VitsFeatureExtractor(),
|
| 605 |
-
training_args = training_args,
|
| 606 |
-
full_generation_sample_index= -1,
|
| 607 |
-
project_name = "AZ",
|
| 608 |
-
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
| 609 |
-
is_used_text_encoder=True,
|
| 610 |
-
is_used_posterior_encode=True,
|
| 611 |
-
# dict_state_grad_loss=sgl,
|
| 612 |
-
nk=50,
|
| 613 |
-
path_save_model=dir_model,
|
| 614 |
-
maf=model.monotonic_align_max_path,
|
| 615 |
-
|
| 616 |
-
n_back_save_model=3000,
|
| 617 |
-
start_speeker=0,
|
| 618 |
-
end_speeker=1,
|
| 619 |
-
n_epoch=i*training_args.num_train_epochs,
|
| 620 |
|
| 621 |
|
| 622 |
-
)
|
| 623 |
-
|
| 624 |
def greet(text,id):
|
| 625 |
global GK
|
| 626 |
b=int(id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 627 |
while True:
|
| 628 |
GK+=1
|
| 629 |
texts=[text]*b
|
|
|
|
| 589 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 590 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 592 |
|
| 593 |
|
|
|
|
|
|
|
| 594 |
def greet(text,id):
|
| 595 |
global GK
|
| 596 |
b=int(id)
|
| 597 |
+
for i in range(10000):
|
| 598 |
+
# model.train(True)
|
| 599 |
+
print(f'clcye epochs ={i}')
|
| 600 |
+
yield f'clcye epochs ={i}'
|
| 601 |
+
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
| 602 |
+
# model.setMfA(monotonic_align.maximum_path)
|
| 603 |
+
#dir_model_save=dir_model+'/vend'
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
trainer_to_cuda(model,
|
| 607 |
+
ctrain_datasets = ctrain_datasets,
|
| 608 |
+
eval_dataset = eval_dataset,
|
| 609 |
+
full_generation_dataset = ctrain_datasets[0][0],
|
| 610 |
+
feature_extractor = VitsFeatureExtractor(),
|
| 611 |
+
training_args = training_args,
|
| 612 |
+
full_generation_sample_index= -1,
|
| 613 |
+
project_name = "AZ",
|
| 614 |
+
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
| 615 |
+
is_used_text_encoder=True,
|
| 616 |
+
is_used_posterior_encode=True,
|
| 617 |
+
# dict_state_grad_loss=sgl,
|
| 618 |
+
nk=50,
|
| 619 |
+
path_save_model=dir_model,
|
| 620 |
+
maf=model.monotonic_align_max_path,
|
| 621 |
+
|
| 622 |
+
n_back_save_model=3000,
|
| 623 |
+
start_speeker=0,
|
| 624 |
+
end_speeker=1,
|
| 625 |
+
n_epoch=i*training_args.num_train_epochs,
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
)
|
| 629 |
while True:
|
| 630 |
GK+=1
|
| 631 |
texts=[text]*b
|