Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| import uuid | |
| import io | |
| from PIL import Image | |
| from threading import Thread | |
| # Define model options (for the OCR model specifically) | |
| MODEL_OPTIONS = { | |
| "Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
| } | |
| # Preload models and processors into CUDA | |
| models = {} | |
| processors = {} | |
| for name, model_id in MODEL_OPTIONS.items(): | |
| print(f"Loading {name}...") | |
| models[name] = Qwen2VLForConditionalGeneration.from_pretrained( | |
| model_id, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
| image_extensions = Image.registered_extensions() | |
| def identify_and_save_blob(blob_path): | |
| """Identifies if the blob is an image and saves it.""" | |
| try: | |
| with open(blob_path, 'rb') as file: | |
| blob_content = file.read() | |
| try: | |
| Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image | |
| extension = ".png" # Default to PNG for saving | |
| media_type = "image" | |
| except (IOError, SyntaxError): | |
| raise ValueError("Unsupported media type. Please upload a valid image.") | |
| filename = f"temp_{uuid.uuid4()}_media{extension}" | |
| with open(filename, "wb") as f: | |
| f.write(blob_content) | |
| return filename, media_type | |
| except FileNotFoundError: | |
| raise ValueError(f"The file {blob_path} was not found.") | |
| except Exception as e: | |
| raise ValueError(f"An error occurred while processing the file: {e}") | |
| def qwen_inference(model_name, media_input, text_input=None): | |
| """Handles inference for the selected model.""" | |
| model = models[model_name] | |
| processor = processors[model_name] | |
| if isinstance(media_input, str): | |
| media_path = media_input | |
| if media_path.endswith(tuple([i for i in image_extensions.keys()])): | |
| media_type = "image" | |
| else: | |
| try: | |
| media_path, media_type = identify_and_save_blob(media_input) | |
| except Exception as e: | |
| raise ValueError("Unsupported media type. Please upload a valid image.") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": media_type, | |
| media_type: media_path | |
| }, | |
| {"type": "text", "text": text_input}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, _ = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer( | |
| processor.tokenizer, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| # Remove <|im_end|> or similar tokens from the output | |
| buffer = buffer.replace("<|im_end|>", "") | |
| yield buffer | |
| def ocr_endpoint(image, question): | |
| """This function will be exposed to the /ocr endpoint for OCR processing.""" | |
| return qwen_inference("Latex OCR", image, question) | |
| # Gradio app setup for OCR endpoint | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Qwen2VL OCR Model - Latex OCR") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_media = gr.File(label="Upload Image", type="filepath") | |
| text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text", lines=10) | |
| submit_btn.click( | |
| ocr_endpoint, [input_media, text_input], [output_text] | |
| ) | |
| # Launch the app on the /ocr endpoint | |
| demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True) | |