Spaces:
Runtime error
Runtime error
Create new-app.py
Browse files- new-app.py +128 -0
new-app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 3 |
+
from qwen_vl_utils import process_vision_info
|
| 4 |
+
import torch
|
| 5 |
+
import uuid
|
| 6 |
+
import io
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from threading import Thread
|
| 9 |
+
|
| 10 |
+
# Define model options (for the OCR model specifically)
|
| 11 |
+
MODEL_OPTIONS = {
|
| 12 |
+
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
# Preload models and processors into CUDA
|
| 16 |
+
models = {}
|
| 17 |
+
processors = {}
|
| 18 |
+
for name, model_id in MODEL_OPTIONS.items():
|
| 19 |
+
print(f"Loading {name}...")
|
| 20 |
+
models[name] = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 21 |
+
model_id,
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
torch_dtype=torch.float16
|
| 24 |
+
).to("cuda").eval()
|
| 25 |
+
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 26 |
+
|
| 27 |
+
image_extensions = Image.registered_extensions()
|
| 28 |
+
|
| 29 |
+
def identify_and_save_blob(blob_path):
|
| 30 |
+
"""Identifies if the blob is an image and saves it."""
|
| 31 |
+
try:
|
| 32 |
+
with open(blob_path, 'rb') as file:
|
| 33 |
+
blob_content = file.read()
|
| 34 |
+
try:
|
| 35 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
| 36 |
+
extension = ".png" # Default to PNG for saving
|
| 37 |
+
media_type = "image"
|
| 38 |
+
except (IOError, SyntaxError):
|
| 39 |
+
raise ValueError("Unsupported media type. Please upload a valid image.")
|
| 40 |
+
|
| 41 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
| 42 |
+
with open(filename, "wb") as f:
|
| 43 |
+
f.write(blob_content)
|
| 44 |
+
|
| 45 |
+
return filename, media_type
|
| 46 |
+
|
| 47 |
+
except FileNotFoundError:
|
| 48 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
| 49 |
+
except Exception as e:
|
| 50 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
| 51 |
+
|
| 52 |
+
def qwen_inference(model_name, media_input, text_input=None):
|
| 53 |
+
"""Handles inference for the selected model."""
|
| 54 |
+
model = models[model_name]
|
| 55 |
+
processor = processors[model_name]
|
| 56 |
+
|
| 57 |
+
if isinstance(media_input, str):
|
| 58 |
+
media_path = media_input
|
| 59 |
+
if media_path.endswith(tuple([i for i in image_extensions.keys()])):
|
| 60 |
+
media_type = "image"
|
| 61 |
+
else:
|
| 62 |
+
try:
|
| 63 |
+
media_path, media_type = identify_and_save_blob(media_input)
|
| 64 |
+
except Exception as e:
|
| 65 |
+
raise ValueError("Unsupported media type. Please upload a valid image.")
|
| 66 |
+
|
| 67 |
+
messages = [
|
| 68 |
+
{
|
| 69 |
+
"role": "user",
|
| 70 |
+
"content": [
|
| 71 |
+
{
|
| 72 |
+
"type": media_type,
|
| 73 |
+
media_type: media_path
|
| 74 |
+
},
|
| 75 |
+
{"type": "text", "text": text_input},
|
| 76 |
+
],
|
| 77 |
+
}
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
text = processor.apply_chat_template(
|
| 81 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 82 |
+
)
|
| 83 |
+
image_inputs, _ = process_vision_info(messages)
|
| 84 |
+
inputs = processor(
|
| 85 |
+
text=[text],
|
| 86 |
+
images=image_inputs,
|
| 87 |
+
padding=True,
|
| 88 |
+
return_tensors="pt",
|
| 89 |
+
).to("cuda")
|
| 90 |
+
|
| 91 |
+
streamer = TextIteratorStreamer(
|
| 92 |
+
processor.tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 93 |
+
)
|
| 94 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 95 |
+
|
| 96 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 97 |
+
thread.start()
|
| 98 |
+
|
| 99 |
+
buffer = ""
|
| 100 |
+
for new_text in streamer:
|
| 101 |
+
buffer += new_text
|
| 102 |
+
# Remove <|im_end|> or similar tokens from the output
|
| 103 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 104 |
+
yield buffer
|
| 105 |
+
|
| 106 |
+
def ocr_endpoint(image, question):
|
| 107 |
+
"""This function will be exposed to the /ocr endpoint for OCR processing."""
|
| 108 |
+
return qwen_inference("Latex OCR", image, question)
|
| 109 |
+
|
| 110 |
+
# Gradio app setup for OCR endpoint
|
| 111 |
+
with gr.Blocks() as demo:
|
| 112 |
+
gr.Markdown("# Qwen2VL OCR Model - Latex OCR")
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column():
|
| 116 |
+
input_media = gr.File(label="Upload Image", type="filepath")
|
| 117 |
+
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...")
|
| 118 |
+
submit_btn = gr.Button(value="Submit")
|
| 119 |
+
|
| 120 |
+
with gr.Column():
|
| 121 |
+
output_text = gr.Textbox(label="Output Text", lines=10)
|
| 122 |
+
|
| 123 |
+
submit_btn.click(
|
| 124 |
+
ocr_endpoint, [input_media, text_input], [output_text]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Launch the app on the /ocr endpoint
|
| 128 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True)
|