Voice-guard / app /train.py
varunkul's picture
Upload 6 files
e2c61ce verified
raw
history blame
11.9 kB
import os
import argparse
import random
from pathlib import Path
from contextlib import nullcontext
import importlib.util
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader
# ---------- Local imports ----------
try:
from .models.cnn_melspec import TinyMelCNN
from .utils.audio import load_audio, pad_or_trim, logmel, TARGET_SR
except ImportError:
from app.models.cnn_melspec import TinyMelCNN
from app.utils.audio import load_audio, pad_or_trim, logmel, TARGET_SR
# ---------- Augmentations (robust across versions) ----------
from audiomentations import (
Compose, AddGaussianNoise, TimeStretch, PitchShift, BandPassFilter
)
def make_gain(min_db, max_db, p):
"""Handle both min_gain_in_db/max_gain_in_db and min_gain_db/max_gain_db."""
from audiomentations import Gain as _Gain
try:
return _Gain(min_gain_in_db=min_db, max_gain_in_db=max_db, p=p)
except TypeError:
return _Gain(min_gain_db=min_db, max_gain_db=max_db, p=p)
def make_clipping(p=0.3):
"""
Build ClippingDistortion across versions.
Newer: min_percent/max_percent (0..20 typical)
Older: min_percentile_threshold/max_percentile_threshold in [0..100]
Returns None if not available.
"""
try:
from audiomentations import ClippingDistortion as _Clip
except Exception:
return None
# Try newer signature
for kwargs in (
dict(min_percent=0.0, max_percent=20.0, p=p),
dict(min_percent=5.0, max_percent=30.0, p=p),
):
try:
return _Clip(**kwargs)
except Exception:
pass
# Try older signature
for kwargs in (
dict(min_percentile_threshold=95, max_percentile_threshold=100, p=p),
dict(min_percentile_threshold=90, max_percentile_threshold=99, p=p),
):
try:
return _Clip(**kwargs)
except Exception:
pass
return None
def have_fast_mp3():
return importlib.util.find_spec("fast_mp3_augment") is not None
def make_mp3_compression(min_bitrate=48, max_bitrate=96, p=0.6):
"""
Only enable Mp3Compression when the fast backend is present.
On Windows without the extra package this often breaks; we skip it.
"""
if not have_fast_mp3():
return None
try:
from audiomentations import Mp3Compression as _Mp3
# Prefer the fast backend; if API lacks backend arg, constructor still works.
try:
return _Mp3(min_bitrate=min_bitrate, max_bitrate=max_bitrate, p=p, backend="fast_mp3_augment")
except TypeError:
return _Mp3(min_bitrate=min_bitrate, max_bitrate=max_bitrate, p=p)
except Exception:
return None
# ---------- Repro ----------
def set_seed(seed: int = 42):
random.seed(seed); np.random.seed(seed)
torch.manual_seed(seed); torch.cuda.manual_seed_all(seed)
# ---------- Dataset ----------
class FolderDataset(Dataset):
"""
data_dir/
human/*.wav
ai/*.wav
"""
def __init__(self, root: str, split: str = "train", val_ratio: float = 0.15,
seed: int = 42, clip_seconds: float = 3.0):
self.root = Path(root)
self.clip_seconds = float(clip_seconds)
human = sorted((self.root / "human").glob("*.wav"))
ai = sorted((self.root / "ai").glob("*.wav"))
pairs = [(p, 0) for p in human] + [(p, 1) for p in ai]
rng = random.Random(seed)
rng.shuffle(pairs)
n_val = int(len(pairs) * val_ratio)
self.items = pairs[n_val:] if split == "train" else pairs[:n_val]
self.is_train = split == "train"
self._len_h = sum(1 for _, y in self.items if y == 0)
self._len_a = sum(1 for _, y in self.items if y == 1)
# Human: mild, natural perturbations
self.aug_human = Compose([
AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.01, p=0.4),
TimeStretch(min_rate=0.96, max_rate=1.04, p=0.3),
PitchShift(min_semitones=-1, max_semitones=1, p=0.2),
make_gain(-4, 4, p=0.3),
])
# AI: replay-aware chain (speaker/room/mic simulation)
ai_transforms = [
BandPassFilter(min_center_freq=200.0, max_center_freq=3500.0, p=0.5),
AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.01, p=0.3),
TimeStretch(min_rate=0.95, max_rate=1.05, p=0.25),
make_gain(-6, 6, p=0.3),
]
clip = make_clipping(p=0.3)
if clip is not None:
ai_transforms.insert(1, clip)
mp3 = make_mp3_compression()
if mp3 is not None:
ai_transforms.insert(0, mp3)
self.aug_ai = Compose(ai_transforms)
def __len__(self):
return len(self.items)
def __getitem__(self, idx: int):
path, label = self.items[idx]
y, sr = load_audio(str(path), TARGET_SR)
y = pad_or_trim(y, duration_s=self.clip_seconds, sr=sr)
if self.is_train:
if label == 1:
y = self.aug_ai(samples=y, sample_rate=sr)
else:
y = self.aug_human(samples=y, sample_rate=sr)
mel = logmel(y, sr) # (n_mels, T)
x = torch.from_numpy(mel).unsqueeze(0) # (1, n_mels, T)
y_t = torch.tensor(label, dtype=torch.long)
return x, y_t
# ---------- Dataloaders ----------
def make_dataloaders(args):
ds_tr = FolderDataset(args.data_dir, split="train", val_ratio=args.val_ratio,
seed=args.seed, clip_seconds=args.clip_seconds)
ds_va = FolderDataset(args.data_dir, split="val", val_ratio=args.val_ratio,
seed=args.seed, clip_seconds=args.clip_seconds)
# Windows is happier with workers=0; keep configurable
workers = args.workers if args.workers >= 0 else (0 if os.name == "nt" else max(1, (os.cpu_count() or 4)//2))
pin = (not args.cpu) and torch.cuda.is_available()
dl_tr = DataLoader(
ds_tr, batch_size=args.batch_size, shuffle=True,
num_workers=workers, pin_memory=pin,
persistent_workers=(workers > 0), drop_last=True,
)
dl_va = DataLoader(
ds_va, batch_size=max(1, args.batch_size // 2), shuffle=False,
num_workers=workers, pin_memory=pin,
persistent_workers=(workers > 0),
)
return ds_tr, ds_va, dl_tr, dl_va
def class_weights_from_dataset(ds: FolderDataset, eps: float = 1e-6):
n_h, n_a = max(ds._len_h, eps), max(ds._len_a, eps)
w_h = (n_h + n_a) / (2 * n_h)
w_a = (n_h + n_a) / (2 * n_a)
return torch.tensor([w_h, w_a], dtype=torch.float32)
# ---------- Training / Eval ----------
def train_one_epoch(model, dl, device, opt, scaler, autocast_ctx, loss_fn, grad_accum=1):
model.train()
total_loss = 0.0
correct = 0
seen = 0
opt.zero_grad(set_to_none=True)
for step, (x, y) in enumerate(dl):
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
with autocast_ctx:
logits = model(x)
loss = loss_fn(logits, y)
loss = loss / grad_accum
if getattr(scaler, "is_enabled", lambda: False)():
scaler.scale(loss).backward()
else:
loss.backward()
if (step + 1) % grad_accum == 0:
if getattr(scaler, "is_enabled", lambda: False)():
scaler.step(opt)
scaler.update()
else:
opt.step()
opt.zero_grad(set_to_none=True)
total_loss += float(loss) * x.size(0) * grad_accum
correct += int((logits.argmax(1) == y).sum().item())
seen += x.size(0)
return total_loss / max(seen, 1), correct / max(seen, 1)
@torch.no_grad()
def evaluate(model, dl, device, loss_fn):
model.eval()
total_loss = 0.0
correct = 0
seen = 0
for x, y in dl:
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
logits = model(x)
loss = loss_fn(logits, y)
total_loss += float(loss) * x.size(0)
correct += int((logits.argmax(1) == y).sum().item())
seen += x.size(0)
return total_loss / max(seen, 1), correct / max(seen, 1)
def main(args):
set_seed(args.seed)
device = "cuda" if (torch.cuda.is_available() and not args.cpu) else "cpu"
cudnn.benchmark = True
ds_tr, ds_va, dl_tr, dl_va = make_dataloaders(args)
print(f"Train items: {len(ds_tr)} (human={ds_tr._len_h}, ai={ds_tr._len_a})")
print(f"Val items: {len(ds_va)}")
model = TinyMelCNN().to(device)
weights = class_weights_from_dataset(ds_tr).to(device)
loss_fn = torch.nn.CrossEntropyLoss(weight=weights)
opt = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-4)
# AMP (use new torch.amp if available, else fallback)
try:
from torch.amp import GradScaler, autocast as amp_autocast
scaler = GradScaler("cuda", enabled=(device == "cuda" and args.amp))
autocast_ctx = amp_autocast("cuda") if (device == "cuda" and args.amp) else nullcontext()
except Exception:
from torch.cuda.amp import GradScaler, autocast as amp_autocast # deprecated but works
scaler = GradScaler(enabled=(device == "cuda" and args.amp))
autocast_ctx = amp_autocast() if (device == "cuda" and args.amp) else nullcontext()
best_va = -1.0
patience_counter = 0
Path(args.out).parent.mkdir(parents=True, exist_ok=True)
for epoch in range(args.epochs):
tr_loss, tr_acc = train_one_epoch(
model, dl_tr, device, opt, scaler, autocast_ctx, loss_fn,
grad_accum=args.grad_accum
)
va_loss, va_acc = evaluate(model, dl_va, device, loss_fn)
print(f"epoch {epoch+1:02d}/{args.epochs} | train {tr_loss:.3f}/{tr_acc:.3f} | val {va_loss:.3f}/{va_acc:.3f}")
# Save "last" every epoch
torch.save(model.state_dict(), args.out.replace(".pth", ".last.pth"))
if va_acc > best_va + 1e-4:
best_va = va_acc
torch.save(model.state_dict(), args.out)
patience_counter = 0
print(f"✅ Saved best to {args.out} (val_acc={best_va:.3f})")
else:
patience_counter += 1
if args.early_stop > 0 and patience_counter >= args.early_stop:
print(f"⏹️ Early stopping at epoch {epoch+1} (best val_acc={best_va:.3f})")
break
print("Done.")
if __name__ == "__main__":
p = argparse.ArgumentParser(description="Train AI Voice Detector (replay-aware, version-robust, no fast_mp3 required)")
p.add_argument("--data_dir", type=str, required=True, help="Folder with subfolders human/ and ai/")
p.add_argument("--out", type=str, default="app/models/weights/cnn_melspec.pth")
p.add_argument("--epochs", type=int, default=10)
p.add_argument("--batch_size", type=int, default=32)
p.add_argument("--grad_accum", type=int, default=2)
p.add_argument("--lr", type=float, default=1e-3)
p.add_argument("--val_ratio", type=float, default=0.15)
p.add_argument("--clip_seconds", type=float, default=3.0)
p.add_argument("--workers", type=int, default=-1) # try --workers 0 on Windows if you see issues
p.add_argument("--amp", action="store_true", default=True)
p.add_argument("--cpu", action="store_true")
p.add_argument("--early_stop", type=int, default=0)
p.add_argument("--seed", type=int, default=42)
args = p.parse_args()
main(args)