File size: 11,873 Bytes
e2c61ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import argparse
import random
from pathlib import Path
from contextlib import nullcontext
import importlib.util

import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader

# ---------- Local imports ----------
try:
    from .models.cnn_melspec import TinyMelCNN
    from .utils.audio import load_audio, pad_or_trim, logmel, TARGET_SR
except ImportError:
    from app.models.cnn_melspec import TinyMelCNN
    from app.utils.audio import load_audio, pad_or_trim, logmel, TARGET_SR

# ---------- Augmentations (robust across versions) ----------
from audiomentations import (
    Compose, AddGaussianNoise, TimeStretch, PitchShift, BandPassFilter
)

def make_gain(min_db, max_db, p):
    """Handle both min_gain_in_db/max_gain_in_db and min_gain_db/max_gain_db."""
    from audiomentations import Gain as _Gain
    try:
        return _Gain(min_gain_in_db=min_db, max_gain_in_db=max_db, p=p)
    except TypeError:
        return _Gain(min_gain_db=min_db, max_gain_db=max_db, p=p)

def make_clipping(p=0.3):
    """

    Build ClippingDistortion across versions.

    Newer:  min_percent/max_percent (0..20 typical)

    Older:  min_percentile_threshold/max_percentile_threshold in [0..100]

    Returns None if not available.

    """
    try:
        from audiomentations import ClippingDistortion as _Clip
    except Exception:
        return None

    # Try newer signature
    for kwargs in (
        dict(min_percent=0.0, max_percent=20.0, p=p),
        dict(min_percent=5.0,  max_percent=30.0, p=p),
    ):
        try:
            return _Clip(**kwargs)
        except Exception:
            pass

    # Try older signature
    for kwargs in (
        dict(min_percentile_threshold=95, max_percentile_threshold=100, p=p),
        dict(min_percentile_threshold=90, max_percentile_threshold=99,  p=p),
    ):
        try:
            return _Clip(**kwargs)
        except Exception:
            pass

    return None

def have_fast_mp3():
    return importlib.util.find_spec("fast_mp3_augment") is not None

def make_mp3_compression(min_bitrate=48, max_bitrate=96, p=0.6):
    """

    Only enable Mp3Compression when the fast backend is present.

    On Windows without the extra package this often breaks; we skip it.

    """
    if not have_fast_mp3():
        return None
    try:
        from audiomentations import Mp3Compression as _Mp3
        # Prefer the fast backend; if API lacks backend arg, constructor still works.
        try:
            return _Mp3(min_bitrate=min_bitrate, max_bitrate=max_bitrate, p=p, backend="fast_mp3_augment")
        except TypeError:
            return _Mp3(min_bitrate=min_bitrate, max_bitrate=max_bitrate, p=p)
    except Exception:
        return None

# ---------- Repro ----------
def set_seed(seed: int = 42):
    random.seed(seed); np.random.seed(seed)
    torch.manual_seed(seed); torch.cuda.manual_seed_all(seed)

# ---------- Dataset ----------
class FolderDataset(Dataset):
    """

    data_dir/

      human/*.wav

      ai/*.wav

    """
    def __init__(self, root: str, split: str = "train", val_ratio: float = 0.15,

                 seed: int = 42, clip_seconds: float = 3.0):
        self.root = Path(root)
        self.clip_seconds = float(clip_seconds)

        human = sorted((self.root / "human").glob("*.wav"))
        ai = sorted((self.root / "ai").glob("*.wav"))
        pairs = [(p, 0) for p in human] + [(p, 1) for p in ai]

        rng = random.Random(seed)
        rng.shuffle(pairs)

        n_val = int(len(pairs) * val_ratio)
        self.items = pairs[n_val:] if split == "train" else pairs[:n_val]
        self.is_train = split == "train"

        self._len_h = sum(1 for _, y in self.items if y == 0)
        self._len_a = sum(1 for _, y in self.items if y == 1)

        # Human: mild, natural perturbations
        self.aug_human = Compose([
            AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.01, p=0.4),
            TimeStretch(min_rate=0.96, max_rate=1.04, p=0.3),
            PitchShift(min_semitones=-1, max_semitones=1, p=0.2),
            make_gain(-4, 4, p=0.3),
        ])

        # AI: replay-aware chain (speaker/room/mic simulation)
        ai_transforms = [
            BandPassFilter(min_center_freq=200.0, max_center_freq=3500.0, p=0.5),
            AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.01, p=0.3),
            TimeStretch(min_rate=0.95, max_rate=1.05, p=0.25),
            make_gain(-6, 6, p=0.3),
        ]
        clip = make_clipping(p=0.3)
        if clip is not None:
            ai_transforms.insert(1, clip)
        mp3 = make_mp3_compression()
        if mp3 is not None:
            ai_transforms.insert(0, mp3)

        self.aug_ai = Compose(ai_transforms)

    def __len__(self):
        return len(self.items)

    def __getitem__(self, idx: int):
        path, label = self.items[idx]
        y, sr = load_audio(str(path), TARGET_SR)
        y = pad_or_trim(y, duration_s=self.clip_seconds, sr=sr)

        if self.is_train:
            if label == 1:
                y = self.aug_ai(samples=y, sample_rate=sr)
            else:
                y = self.aug_human(samples=y, sample_rate=sr)

        mel = logmel(y, sr)  # (n_mels, T)
        x = torch.from_numpy(mel).unsqueeze(0)  # (1, n_mels, T)
        y_t = torch.tensor(label, dtype=torch.long)
        return x, y_t

# ---------- Dataloaders ----------
def make_dataloaders(args):
    ds_tr = FolderDataset(args.data_dir, split="train", val_ratio=args.val_ratio,
                          seed=args.seed, clip_seconds=args.clip_seconds)
    ds_va = FolderDataset(args.data_dir, split="val", val_ratio=args.val_ratio,
                          seed=args.seed, clip_seconds=args.clip_seconds)

    # Windows is happier with workers=0; keep configurable
    workers = args.workers if args.workers >= 0 else (0 if os.name == "nt" else max(1, (os.cpu_count() or 4)//2))
    pin = (not args.cpu) and torch.cuda.is_available()

    dl_tr = DataLoader(
        ds_tr, batch_size=args.batch_size, shuffle=True,
        num_workers=workers, pin_memory=pin,
        persistent_workers=(workers > 0), drop_last=True,
    )
    dl_va = DataLoader(
        ds_va, batch_size=max(1, args.batch_size // 2), shuffle=False,
        num_workers=workers, pin_memory=pin,
        persistent_workers=(workers > 0),
    )
    return ds_tr, ds_va, dl_tr, dl_va

def class_weights_from_dataset(ds: FolderDataset, eps: float = 1e-6):
    n_h, n_a = max(ds._len_h, eps), max(ds._len_a, eps)
    w_h = (n_h + n_a) / (2 * n_h)
    w_a = (n_h + n_a) / (2 * n_a)
    return torch.tensor([w_h, w_a], dtype=torch.float32)

# ---------- Training / Eval ----------
def train_one_epoch(model, dl, device, opt, scaler, autocast_ctx, loss_fn, grad_accum=1):
    model.train()
    total_loss = 0.0
    correct = 0
    seen = 0
    opt.zero_grad(set_to_none=True)

    for step, (x, y) in enumerate(dl):
        x = x.to(device, non_blocking=True)
        y = y.to(device, non_blocking=True)

        with autocast_ctx:
            logits = model(x)
            loss = loss_fn(logits, y)

        loss = loss / grad_accum
        if getattr(scaler, "is_enabled", lambda: False)():
            scaler.scale(loss).backward()
        else:
            loss.backward()

        if (step + 1) % grad_accum == 0:
            if getattr(scaler, "is_enabled", lambda: False)():
                scaler.step(opt)
                scaler.update()
            else:
                opt.step()
            opt.zero_grad(set_to_none=True)

        total_loss += float(loss) * x.size(0) * grad_accum
        correct += int((logits.argmax(1) == y).sum().item())
        seen += x.size(0)

    return total_loss / max(seen, 1), correct / max(seen, 1)

@torch.no_grad()
def evaluate(model, dl, device, loss_fn):
    model.eval()
    total_loss = 0.0
    correct = 0
    seen = 0
    for x, y in dl:
        x = x.to(device, non_blocking=True)
        y = y.to(device, non_blocking=True)
        logits = model(x)
        loss = loss_fn(logits, y)
        total_loss += float(loss) * x.size(0)
        correct += int((logits.argmax(1) == y).sum().item())
        seen += x.size(0)
    return total_loss / max(seen, 1), correct / max(seen, 1)

def main(args):
    set_seed(args.seed)
    device = "cuda" if (torch.cuda.is_available() and not args.cpu) else "cpu"
    cudnn.benchmark = True

    ds_tr, ds_va, dl_tr, dl_va = make_dataloaders(args)
    print(f"Train items: {len(ds_tr)} (human={ds_tr._len_h}, ai={ds_tr._len_a})")
    print(f"Val   items: {len(ds_va)}")

    model = TinyMelCNN().to(device)

    weights = class_weights_from_dataset(ds_tr).to(device)
    loss_fn = torch.nn.CrossEntropyLoss(weight=weights)

    opt = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-4)

    # AMP (use new torch.amp if available, else fallback)
    try:
        from torch.amp import GradScaler, autocast as amp_autocast
        scaler = GradScaler("cuda", enabled=(device == "cuda" and args.amp))
        autocast_ctx = amp_autocast("cuda") if (device == "cuda" and args.amp) else nullcontext()
    except Exception:
        from torch.cuda.amp import GradScaler, autocast as amp_autocast  # deprecated but works
        scaler = GradScaler(enabled=(device == "cuda" and args.amp))
        autocast_ctx = amp_autocast() if (device == "cuda" and args.amp) else nullcontext()

    best_va = -1.0
    patience_counter = 0
    Path(args.out).parent.mkdir(parents=True, exist_ok=True)

    for epoch in range(args.epochs):
        tr_loss, tr_acc = train_one_epoch(
            model, dl_tr, device, opt, scaler, autocast_ctx, loss_fn,
            grad_accum=args.grad_accum
        )
        va_loss, va_acc = evaluate(model, dl_va, device, loss_fn)

        print(f"epoch {epoch+1:02d}/{args.epochs} | train {tr_loss:.3f}/{tr_acc:.3f} | val {va_loss:.3f}/{va_acc:.3f}")

        # Save "last" every epoch
        torch.save(model.state_dict(), args.out.replace(".pth", ".last.pth"))

        if va_acc > best_va + 1e-4:
            best_va = va_acc
            torch.save(model.state_dict(), args.out)
            patience_counter = 0
            print(f"✅ Saved best to {args.out} (val_acc={best_va:.3f})")
        else:
            patience_counter += 1
            if args.early_stop > 0 and patience_counter >= args.early_stop:
                print(f"⏹️ Early stopping at epoch {epoch+1} (best val_acc={best_va:.3f})")
                break

    print("Done.")

if __name__ == "__main__":
    p = argparse.ArgumentParser(description="Train AI Voice Detector (replay-aware, version-robust, no fast_mp3 required)")
    p.add_argument("--data_dir", type=str, required=True, help="Folder with subfolders human/ and ai/")
    p.add_argument("--out", type=str, default="app/models/weights/cnn_melspec.pth")
    p.add_argument("--epochs", type=int, default=10)
    p.add_argument("--batch_size", type=int, default=32)
    p.add_argument("--grad_accum", type=int, default=2)
    p.add_argument("--lr", type=float, default=1e-3)
    p.add_argument("--val_ratio", type=float, default=0.15)
    p.add_argument("--clip_seconds", type=float, default=3.0)
    p.add_argument("--workers", type=int, default=-1)   # try --workers 0 on Windows if you see issues
    p.add_argument("--amp", action="store_true", default=True)
    p.add_argument("--cpu", action="store_true")
    p.add_argument("--early_stop", type=int, default=0)
    p.add_argument("--seed", type=int, default=42)
    args = p.parse_args()
    main(args)