hamzabouajila's picture
Added traceback import to handle error traces
f12b6ec
raw
history blame
11.6 kB
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.evaluator.evaluate import process_evaluation_queue
import threading
import time
def restart_space():
try:
# Restart the space
API.restart_space(repo_id=REPO_ID)
except Exception as e:
print(f"Error restarting space: {str(e)}")
# If restart fails, try to download the datasets again
try:
print("Attempting to download datasets again...")
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except Exception as download_error:
print(f"Error downloading datasets: {str(download_error)}")
### Space initialisation
try:
print(f"\n=== Starting space initialization ===")
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
print(f"QUEUE_REPO: {QUEUE_REPO}")
print(f"RESULTS_REPO: {RESULTS_REPO}")
print(f"TOKEN: {bool(TOKEN)}")
print("\n=== Downloading request files ===")
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
print("\n=== Downloading results files ===")
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
print("\n=== Loading leaderboard data ===")
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print(f"Leaderboard DataFrame shape: {LEADERBOARD_DF.shape if LEADERBOARD_DF is not None else 'None'}")
print("\n=== Loading evaluation queue data ===")
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
print(f"Finished eval queue shape: {finished_eval_queue_df.shape if finished_eval_queue_df is not None else 'None'}")
print(f"Running eval queue shape: {running_eval_queue_df.shape if running_eval_queue_df is not None else 'None'}")
print(f"Pending eval queue shape: {pending_eval_queue_df.shape if pending_eval_queue_df is not None else 'None'}")
except Exception as e:
print(f"\n=== Error during space initialization ===")
print(f"Error: {str(e)}")
restart_space()
# Start evaluator service in a separate thread
def run_evaluator():
print("Starting evaluator service...")
while True:
try:
process_evaluation_queue()
print("Evaluation queue processed. Sleeping for 5 minutes...")
time.sleep(300) # Sleep for 5 minutes
except Exception as e:
print(f"Error in evaluation process: {e}")
print("Retrying in 5 minutes...")
time.sleep(300)
# Start evaluator in a separate thread
evaluator_thread = threading.Thread(target=run_evaluator, daemon=True)
evaluator_thread.start()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn())],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn()) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn()) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn().model.name, AutoEvalColumn().license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn()) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn().model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn().precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn().params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn().still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# Add model evaluation functionality
def evaluate_and_update(model_name, revision, precision, weight_type):
"""Add a model evaluation request to the queue"""
try:
# Add evaluation request to queue
add_new_eval(
model_name=model_name,
revision=revision,
precision=precision,
weight_type=weight_type,
model_type="LLM", # Add appropriate model type
)
# Update leaderboard
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
return "Evaluation request added to queue! Check the leaderboard for updates."
except Exception as e:
print(f"Error in evaluate_and_update: {str(e)}")
print(f"Full traceback: {traceback.format_exc()}")
return f"Error adding evaluation request: {str(e)}"
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(INTRODUCTION_TEXT)
gr.Markdown(LLM_BENCHMARKS_TEXT)
gr.Markdown(EVALUATION_QUEUE_TEXT)
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()