File size: 11,642 Bytes
742dfc3
 
 
 
 
 
a04b287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e88f2
 
 
a04b287
 
 
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
 
 
f12b6ec
 
 
 
 
 
 
 
a04b287
 
 
f12b6ec
 
a04b287
 
 
f12b6ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
 
 
28e88f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
 
 
 
 
 
 
 
 
7850eab
 
a04b287
 
ed90aae
a04b287
ed90aae
 
a04b287
 
ed90aae
 
a04b287
ed90aae
 
a04b287
ed90aae
a04b287
 
 
 
 
 
ed90aae
a04b287
 
 
 
 
 
9d7aae7
 
742dfc3
9d7aae7
742dfc3
9d7aae7
 
 
 
 
742dfc3
9d7aae7
 
 
 
742dfc3
9d7aae7
742dfc3
 
 
9d7aae7
a04b287
 
 
 
 
 
 
 
 
 
 
9d7aae7
 
 
 
a04b287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.evaluator.evaluate import process_evaluation_queue
import threading
import time


def restart_space():
    try:
        # Restart the space
        API.restart_space(repo_id=REPO_ID)
    except Exception as e:
        print(f"Error restarting space: {str(e)}")
        # If restart fails, try to download the datasets again
        try:
            print("Attempting to download datasets again...")
            snapshot_download(
                repo_id=QUEUE_REPO, 
                local_dir=EVAL_REQUESTS_PATH, 
                repo_type="dataset", 
                tqdm_class=None, 
                etag_timeout=30, 
                token=TOKEN
            )
            snapshot_download(
                repo_id=RESULTS_REPO, 
                local_dir=EVAL_RESULTS_PATH, 
                repo_type="dataset", 
                tqdm_class=None, 
                etag_timeout=30, 
                token=TOKEN
            )
        except Exception as download_error:
            print(f"Error downloading datasets: {str(download_error)}")

### Space initialisation
try:
    print(f"\n=== Starting space initialization ===")
    print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
    print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
    print(f"QUEUE_REPO: {QUEUE_REPO}")
    print(f"RESULTS_REPO: {RESULTS_REPO}")
    print(f"TOKEN: {bool(TOKEN)}")
    
    print("\n=== Downloading request files ===")
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
    
    print("\n=== Downloading results files ===")
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
    
    print("\n=== Loading leaderboard data ===")
    LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
    print(f"Leaderboard DataFrame shape: {LEADERBOARD_DF.shape if LEADERBOARD_DF is not None else 'None'}")
    
    print("\n=== Loading evaluation queue data ===")
    (
        finished_eval_queue_df,
        running_eval_queue_df,
        pending_eval_queue_df,
    ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
    print(f"Finished eval queue shape: {finished_eval_queue_df.shape if finished_eval_queue_df is not None else 'None'}")
    print(f"Running eval queue shape: {running_eval_queue_df.shape if running_eval_queue_df is not None else 'None'}")
    print(f"Pending eval queue shape: {pending_eval_queue_df.shape if pending_eval_queue_df is not None else 'None'}")
    
except Exception as e:
    print(f"\n=== Error during space initialization ===")
    print(f"Error: {str(e)}")
    restart_space()


# Start evaluator service in a separate thread
def run_evaluator():
    print("Starting evaluator service...")
    while True:
        try:
            process_evaluation_queue()
            print("Evaluation queue processed. Sleeping for 5 minutes...")
            time.sleep(300)  # Sleep for 5 minutes
        except Exception as e:
            print(f"Error in evaluation process: {e}")
            print("Retrying in 5 minutes...")
            time.sleep(300)

# Start evaluator in a separate thread
evaluator_thread = threading.Thread(target=run_evaluator, daemon=True)
evaluator_thread.start()

LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn())],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn()) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn()) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn().model.name, AutoEvalColumn().license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn()) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn().model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn().precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                AutoEvalColumn().params.name,
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                AutoEvalColumn().still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

# Add model evaluation functionality
def evaluate_and_update(model_name, revision, precision, weight_type):
    """Add a model evaluation request to the queue"""
    try:
        # Add evaluation request to queue
        add_new_eval(
            model_name=model_name,
            revision=revision,
            precision=precision,
            weight_type=weight_type,
            model_type="LLM",  # Add appropriate model type
        )
        
        # Update leaderboard
        LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
        return "Evaluation request added to queue! Check the leaderboard for updates."
    except Exception as e:
        print(f"Error in evaluate_and_update: {str(e)}")
        print(f"Full traceback: {traceback.format_exc()}")
        return f"Error adding evaluation request: {str(e)}"


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(INTRODUCTION_TEXT)
            gr.Markdown(LLM_BENCHMARKS_TEXT)
            gr.Markdown(EVALUATION_QUEUE_TEXT)

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()