Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,417 Bytes
36e1539 eadd412 36e1539 eadd412 36e1539 de12ca3 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 eadd412 36e1539 de12ca3 36e1539 de12ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import warnings
from glob import glob
from pathlib import Path
import numpy as np
import torch
import tyro
from PIL import Image
from scipy.ndimage import binary_erosion, distance_transform_edt
from scipy.stats import ks_2samp
from zea import log
from zea.io_lib import load_image
import fid_score
from plots import plot_metrics
def calculate_fid_score(denoised_image_dirs, ground_truth_dir):
if isinstance(denoised_image_dirs, (str, Path)):
denoised_image_dirs = [denoised_image_dirs]
elif not isinstance(denoised_image_dirs, list):
raise ValueError("Input must be a path or list of paths")
clean_images_folder = glob(str(ground_truth_dir) + "/*.png")
print(f"Looking for clean images in: {ground_truth_dir}")
print(f"Found {len(clean_images_folder)} clean images")
# Determine optimal batch size based on number of images
num_denoised = len(denoised_image_dirs)
num_clean = len(clean_images_folder)
optimal_batch_size = min(8, num_denoised, num_clean)
print(f"Using batch size: {optimal_batch_size}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="os.fork.*JAX is multithreaded")
fid_value = fid_score.calculate_fid_with_cached_ground_truth(
denoised_image_dirs,
clean_images_folder,
batch_size=optimal_batch_size,
device="cuda" if torch.cuda.is_available() else "cpu",
num_workers=2 if torch.cuda.is_available() else 0,
dims=2048,
)
return fid_value
def gcnr(img1, img2):
"""Generalized Contrast-to-Noise Ratio"""
_, bins = np.histogram(np.concatenate((img1, img2)), bins=256)
f, _ = np.histogram(img1, bins=bins, density=True)
g, _ = np.histogram(img2, bins=bins, density=True)
f /= f.sum()
g /= g.sum()
return 1 - np.sum(np.minimum(f, g))
def cnr(img1, img2):
"""Contrast-to-Noise Ratio"""
return (img1.mean() - img2.mean()) / np.sqrt(img1.var() + img2.var())
def calculate_cnr_gcnr(result_dehazed_cardiac_ultrasound, mask_path):
"""
Evaluate gCNR and CNR metrics for denoised images using paired masks.
Saves detailed and summary statistics to Excel.
"""
results = []
mask = np.array(Image.open(mask_path).convert("L"))
roi1_pixels = result_dehazed_cardiac_ultrasound[mask == 255] # Foreground ROI
roi2_pixels = result_dehazed_cardiac_ultrasound[mask == 128] # Background/Noise ROI
gcnr_val = gcnr(roi1_pixels, roi2_pixels)
cnr_val = cnr(roi1_pixels, roi2_pixels)
results.append([cnr_val, gcnr_val])
return results
def calculate_ks_statistics(
result_hazy_cardiac_ultrasound, result_dehazed_cardiac_ultrasound, mask_path
):
mask = np.array(Image.open(mask_path).convert("L"))
roi1_original = result_hazy_cardiac_ultrasound[mask == 255] # region A
roi1_denoised = result_dehazed_cardiac_ultrasound[mask == 255]
roi2_original = result_hazy_cardiac_ultrasound[mask == 128] # region B
roi2_denoised = result_dehazed_cardiac_ultrasound[mask == 128]
roi1_ks_stat, roi1_ks_p_value = (None, None)
roi2_ks_stat, roi2_ks_p_value = (None, None)
if roi1_original.size > 0 and roi1_denoised.size > 0:
roi1_ks_stat, roi1_ks_p_value = ks_2samp(roi1_original, roi1_denoised)
if roi2_original.size > 0 and roi2_denoised.size > 0:
roi2_ks_stat, roi2_ks_p_value = ks_2samp(roi2_original, roi2_denoised)
return roi1_ks_stat, roi1_ks_p_value, roi2_ks_stat, roi2_ks_p_value
def calculate_dice_asd(image_path, label_path, checkpoint_path, image_size=224):
try:
from test import inference # Our Segmentation Method
except ImportError:
raise ImportError(
"Segmentation method not available, skipping Dice/ASD calculation"
)
pred_img = inference(image_path, checkpoint_path, image_size)
pred = np.array(pred_img) > 127
label = Image.open(label_path).convert("L")
label = label.resize((image_size, image_size), Image.NEAREST)
label = np.array(label) > 127
# calculate Dice
intersection = np.logical_and(pred, label).sum()
dice = 2 * intersection / (pred.sum() + label.sum() + 1e-8)
# calculate ASD
if pred.sum() == 0 or label.sum() == 0:
asd = np.nan
else:
pred_dt = distance_transform_edt(~pred)
label_dt = distance_transform_edt(~label)
surface_pred = pred ^ binary_erosion(pred)
surface_label = label ^ binary_erosion(label)
d1 = pred_dt[surface_label].mean()
d2 = label_dt[surface_pred].mean()
asd = (d1 + d2) / 2
return dice, asd
def calculate_final_score(aggregates):
try:
# (FID + CNR + gCNR):(KS^A + KS^B):(Dice + ASD)= 5:3:2
group1_score = 0 # FID + CNR + gCNR
if aggregates.get("fid") is not None:
fid_min = 60.0
fid_max = 150.0
fid_score = (fid_max - aggregates["fid"]) / (fid_max - fid_min)
fid_score = max(0, min(1, fid_score))
group1_score += fid_score * 100 * 0.33
if aggregates.get("cnr_mean") is not None:
cnr_min = 1.0
cnr_max = 1.5
cnr_score = (aggregates["cnr_mean"] - cnr_min) / (cnr_max - cnr_min)
cnr_score = max(0, min(1, cnr_score))
group1_score += cnr_score * 100 * 0.33
if aggregates.get("gcnr_mean") is not None:
gcnr_min = 0.5
gcnr_max = 0.8
gcnr_score = (aggregates["gcnr_mean"] - gcnr_min) / (gcnr_max - gcnr_min)
gcnr_score = max(0, min(1, gcnr_score))
group1_score += gcnr_score * 100 * 0.34
group2_score = 0 # KS^A + KS^B
if aggregates.get("ks_roi1_ksstatistic_mean") is not None:
ks1_min = 0.1
ks1_max = 0.3
ks1_score = (ks1_max - aggregates["ks_roi1_ksstatistic_mean"]) / (
ks1_max - ks1_min
)
ks1_score = max(0, min(1, ks1_score))
group2_score += ks1_score * 100 * 0.5
if aggregates.get("ks_roi2_ksstatistic_mean") is not None:
ks2_min = 0.0
ks2_max = 0.5
ks2_score = (aggregates["ks_roi2_ksstatistic_mean"] - ks2_min) / (
ks2_max - ks2_min
)
ks2_score = max(0, min(1, ks2_score))
group2_score += ks2_score * 100 * 0.5
group3_score = 0 # Dice + ASD
if aggregates.get("dice_mean") is not None:
dice_min = 0.85
dice_max = 0.95
dice_score = (aggregates["dice_mean"] - dice_min) / (dice_max - dice_min)
dice_score = max(0, min(1, dice_score))
group3_score += dice_score * 100 * 0.5
if aggregates.get("asd_mean") is not None:
asd_min = 0.7
asd_max = 2.0
asd_score = (asd_max - aggregates["asd_mean"]) / (asd_max - asd_min)
asd_score = max(0, min(1, asd_score))
group3_score += asd_score * 100 * 0.5
# Final score calculation
final_score = (group1_score * 5 + group2_score * 3 + group3_score * 2) / 10
return final_score
except Exception as e:
print(f"Error calculating final score: {str(e)}")
return 0
def evaluate(folder: str, noisy_folder: str, roi_folder: str, reference_folder: str):
"""Evaluate the dehazing algorithm.
Args:
folder (str): Path to the folder containing the dehazed images.
Used for evaluating all metrics.
noisy_folder (str): Path to the folder containing the noisy images.
Only used for KS statistics.
roi_folder (str): Path to the folder containing the ROI images.
Used for contrast and KS statistic metrics.
reference_folder (str): Path to the folder containing the reference images.
Used only for FID calculation.
"""
folder = Path(folder)
noisy_folder = Path(noisy_folder)
roi_folder = Path(roi_folder)
reference_folder = Path(reference_folder)
folder_files = set(f.name for f in folder.glob("*.png"))
noisy_files = set(f.name for f in noisy_folder.glob("*.png"))
roi_files = set(f.name for f in roi_folder.glob("*.png"))
print(f"Found {len(folder_files)} .png files in output folder: {folder}")
print(f"Found {len(noisy_files)} .png files in noisy folder: {noisy_folder}")
print(f"Found {len(roi_files)} .png files in ROI folder: {roi_folder}")
# Find intersection of filenames
common_files = sorted(folder_files & roi_files & noisy_files)
print(f"Found {len(common_files)} matching images in noisy/dehazed/roi folders")
assert len(common_files) > 0, (
"No matching .png files in all folders. Cannot proceed."
)
metrics = {"CNR": [], "gCNR": [], "KS_A": [], "KS_B": []}
limits = {
"CNR": [1.0, 1.5],
"gCNR": [0.5, 0.8],
"KS_A": [0.1, 0.3],
"KS_B": [0.0, 0.5],
}
for name in common_files:
dehazed_path = folder / name
noisy_path = noisy_folder / name
roi_path = roi_folder / name
try:
img_dehazed = np.array(load_image(str(dehazed_path)))
img_noisy = np.array(load_image(str(noisy_path)))
except Exception as e:
print(f"Error loading image {name}: {e}")
continue
# CNR/gCNR
cnr_gcnr = calculate_cnr_gcnr(img_dehazed, str(roi_path))
metrics["CNR"].append(cnr_gcnr[0][0])
metrics["gCNR"].append(cnr_gcnr[0][1])
# KS statistics
ks_a, _, ks_b, _ = calculate_ks_statistics(
img_noisy, img_dehazed, str(roi_path)
)
metrics["KS_A"].append(ks_a)
metrics["KS_B"].append(ks_b)
# Compute statistics
stats = {
k: (np.mean(v), np.std(v), np.min(v), np.max(v)) for k, v in metrics.items()
}
print("Contrast statistics:")
for k, (mean, std, minv, maxv) in stats.items():
print(f"{k}: mean={mean:.3f}, std={std:.3f}, min={minv:.3f}, max={maxv:.3f}")
fig = plot_metrics(metrics, limits, "contrast_metrics.png")
path = Path("contrast_metrics.png")
save_kwargs = {"bbox_inches": "tight", "dpi": 300}
fig.savefig(path, **save_kwargs)
fig.savefig(path.with_suffix(".pdf"), **save_kwargs)
log.success(f"Metrics plot saved to {log.yellow(path)}")
# Compute FID
fid_image_paths = [str(folder / name) for name in common_files]
fid_score = calculate_fid_score(fid_image_paths, str(reference_folder))
print(f"FID between {folder} and {reference_folder}: {fid_score:.3f}")
# Create aggregates dictionary for final score calculation
aggregates = {
"fid": float(fid_score),
"cnr_mean": float(np.mean(metrics["CNR"])),
"cnr_std": float(np.std(metrics["CNR"])),
"gcnr_mean": float(np.mean(metrics["gCNR"])),
"gcnr_std": float(np.std(metrics["gCNR"])),
"ks_roi1_ksstatistic_mean": float(np.mean(metrics["KS_A"])),
"ks_roi1_ksstatistic_std": float(np.std(metrics["KS_A"])),
"ks_roi2_ksstatistic_mean": float(np.mean(metrics["KS_B"])),
"ks_roi2_ksstatistic_std": float(np.std(metrics["KS_B"])),
}
# Calculate final score
final_score = calculate_final_score(aggregates)
aggregates["final_score"] = float(final_score)
return aggregates
if __name__ == "__main__":
tyro.cli(evaluate)
|