File size: 11,417 Bytes
36e1539
 
 
 
 
 
 
 
 
 
eadd412
36e1539
 
 
eadd412
36e1539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de12ca3
eadd412
 
 
 
 
 
 
 
 
 
 
 
36e1539
eadd412
36e1539
 
 
 
eadd412
36e1539
 
 
eadd412
36e1539
 
 
eadd412
 
 
 
 
36e1539
 
 
 
 
 
 
 
 
 
eadd412
 
36e1539
 
 
eadd412
 
36e1539
 
 
 
 
eadd412
36e1539
 
 
 
eadd412
 
 
36e1539
 
 
 
 
 
 
 
 
 
 
eadd412
 
 
 
 
 
 
36e1539
 
 
 
 
 
de12ca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e1539
 
de12ca3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import warnings
from glob import glob
from pathlib import Path

import numpy as np
import torch
import tyro
from PIL import Image
from scipy.ndimage import binary_erosion, distance_transform_edt
from scipy.stats import ks_2samp
from zea import log
from zea.io_lib import load_image

import fid_score
from plots import plot_metrics


def calculate_fid_score(denoised_image_dirs, ground_truth_dir):
    if isinstance(denoised_image_dirs, (str, Path)):
        denoised_image_dirs = [denoised_image_dirs]
    elif not isinstance(denoised_image_dirs, list):
        raise ValueError("Input must be a path or list of paths")

    clean_images_folder = glob(str(ground_truth_dir) + "/*.png")

    print(f"Looking for clean images in: {ground_truth_dir}")
    print(f"Found {len(clean_images_folder)} clean images")

    # Determine optimal batch size based on number of images
    num_denoised = len(denoised_image_dirs)
    num_clean = len(clean_images_folder)
    optimal_batch_size = min(8, num_denoised, num_clean)
    print(f"Using batch size: {optimal_batch_size}")

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", message="os.fork.*JAX is multithreaded")

        fid_value = fid_score.calculate_fid_with_cached_ground_truth(
            denoised_image_dirs,
            clean_images_folder,
            batch_size=optimal_batch_size,
            device="cuda" if torch.cuda.is_available() else "cpu",
            num_workers=2 if torch.cuda.is_available() else 0,
            dims=2048,
        )
    return fid_value


def gcnr(img1, img2):
    """Generalized Contrast-to-Noise Ratio"""
    _, bins = np.histogram(np.concatenate((img1, img2)), bins=256)
    f, _ = np.histogram(img1, bins=bins, density=True)
    g, _ = np.histogram(img2, bins=bins, density=True)
    f /= f.sum()
    g /= g.sum()
    return 1 - np.sum(np.minimum(f, g))


def cnr(img1, img2):
    """Contrast-to-Noise Ratio"""
    return (img1.mean() - img2.mean()) / np.sqrt(img1.var() + img2.var())


def calculate_cnr_gcnr(result_dehazed_cardiac_ultrasound, mask_path):
    """
    Evaluate gCNR and CNR metrics for denoised images using paired masks.
    Saves detailed and summary statistics to Excel.
    """
    results = []

    mask = np.array(Image.open(mask_path).convert("L"))

    roi1_pixels = result_dehazed_cardiac_ultrasound[mask == 255]  # Foreground ROI
    roi2_pixels = result_dehazed_cardiac_ultrasound[mask == 128]  # Background/Noise ROI

    gcnr_val = gcnr(roi1_pixels, roi2_pixels)
    cnr_val = cnr(roi1_pixels, roi2_pixels)

    results.append([cnr_val, gcnr_val])

    return results


def calculate_ks_statistics(
    result_hazy_cardiac_ultrasound, result_dehazed_cardiac_ultrasound, mask_path
):
    mask = np.array(Image.open(mask_path).convert("L"))

    roi1_original = result_hazy_cardiac_ultrasound[mask == 255]  # region A
    roi1_denoised = result_dehazed_cardiac_ultrasound[mask == 255]
    roi2_original = result_hazy_cardiac_ultrasound[mask == 128]  # region B
    roi2_denoised = result_dehazed_cardiac_ultrasound[mask == 128]

    roi1_ks_stat, roi1_ks_p_value = (None, None)
    roi2_ks_stat, roi2_ks_p_value = (None, None)

    if roi1_original.size > 0 and roi1_denoised.size > 0:
        roi1_ks_stat, roi1_ks_p_value = ks_2samp(roi1_original, roi1_denoised)

    if roi2_original.size > 0 and roi2_denoised.size > 0:
        roi2_ks_stat, roi2_ks_p_value = ks_2samp(roi2_original, roi2_denoised)

    return roi1_ks_stat, roi1_ks_p_value, roi2_ks_stat, roi2_ks_p_value


def calculate_dice_asd(image_path, label_path, checkpoint_path, image_size=224):
    try:
        from test import inference  # Our Segmentation Method
    except ImportError:
        raise ImportError(
            "Segmentation method not available, skipping Dice/ASD calculation"
        )

    pred_img = inference(image_path, checkpoint_path, image_size)
    pred = np.array(pred_img) > 127

    label = Image.open(label_path).convert("L")
    label = label.resize((image_size, image_size), Image.NEAREST)
    label = np.array(label) > 127

    # calculate Dice
    intersection = np.logical_and(pred, label).sum()
    dice = 2 * intersection / (pred.sum() + label.sum() + 1e-8)

    # calculate ASD
    if pred.sum() == 0 or label.sum() == 0:
        asd = np.nan
    else:
        pred_dt = distance_transform_edt(~pred)
        label_dt = distance_transform_edt(~label)

        surface_pred = pred ^ binary_erosion(pred)
        surface_label = label ^ binary_erosion(label)

        d1 = pred_dt[surface_label].mean()
        d2 = label_dt[surface_pred].mean()
        asd = (d1 + d2) / 2

    return dice, asd


def calculate_final_score(aggregates):
    try:
        # (FID + CNR + gCNR):(KS^A + KS^B):(Dice + ASD)= 5:3:2

        group1_score = 0  # FID + CNR + gCNR
        if aggregates.get("fid") is not None:
            fid_min = 60.0
            fid_max = 150.0
            fid_score = (fid_max - aggregates["fid"]) / (fid_max - fid_min)
            fid_score = max(0, min(1, fid_score))
            group1_score += fid_score * 100 * 0.33

        if aggregates.get("cnr_mean") is not None:
            cnr_min = 1.0
            cnr_max = 1.5
            cnr_score = (aggregates["cnr_mean"] - cnr_min) / (cnr_max - cnr_min)
            cnr_score = max(0, min(1, cnr_score))
            group1_score += cnr_score * 100 * 0.33

        if aggregates.get("gcnr_mean") is not None:
            gcnr_min = 0.5
            gcnr_max = 0.8
            gcnr_score = (aggregates["gcnr_mean"] - gcnr_min) / (gcnr_max - gcnr_min)
            gcnr_score = max(0, min(1, gcnr_score))
            group1_score += gcnr_score * 100 * 0.34

        group2_score = 0  # KS^A + KS^B
        if aggregates.get("ks_roi1_ksstatistic_mean") is not None:
            ks1_min = 0.1
            ks1_max = 0.3
            ks1_score = (ks1_max - aggregates["ks_roi1_ksstatistic_mean"]) / (
                ks1_max - ks1_min
            )
            ks1_score = max(0, min(1, ks1_score))
            group2_score += ks1_score * 100 * 0.5

        if aggregates.get("ks_roi2_ksstatistic_mean") is not None:
            ks2_min = 0.0
            ks2_max = 0.5
            ks2_score = (aggregates["ks_roi2_ksstatistic_mean"] - ks2_min) / (
                ks2_max - ks2_min
            )
            ks2_score = max(0, min(1, ks2_score))
            group2_score += ks2_score * 100 * 0.5

        group3_score = 0  # Dice + ASD
        if aggregates.get("dice_mean") is not None:
            dice_min = 0.85
            dice_max = 0.95
            dice_score = (aggregates["dice_mean"] - dice_min) / (dice_max - dice_min)
            dice_score = max(0, min(1, dice_score))
            group3_score += dice_score * 100 * 0.5
        if aggregates.get("asd_mean") is not None:
            asd_min = 0.7
            asd_max = 2.0
            asd_score = (asd_max - aggregates["asd_mean"]) / (asd_max - asd_min)
            asd_score = max(0, min(1, asd_score))
            group3_score += asd_score * 100 * 0.5

        # Final score calculation
        final_score = (group1_score * 5 + group2_score * 3 + group3_score * 2) / 10

        return final_score

    except Exception as e:
        print(f"Error calculating final score: {str(e)}")
        return 0


def evaluate(folder: str, noisy_folder: str, roi_folder: str, reference_folder: str):
    """Evaluate the dehazing algorithm.

    Args:
        folder (str): Path to the folder containing the dehazed images.
            Used for evaluating all metrics.
        noisy_folder (str): Path to the folder containing the noisy images.
            Only used for KS statistics.
        roi_folder (str): Path to the folder containing the ROI images.
            Used for contrast and KS statistic metrics.
        reference_folder (str): Path to the folder containing the reference images.
            Used only for FID calculation.
    """
    folder = Path(folder)
    noisy_folder = Path(noisy_folder)
    roi_folder = Path(roi_folder)
    reference_folder = Path(reference_folder)

    folder_files = set(f.name for f in folder.glob("*.png"))
    noisy_files = set(f.name for f in noisy_folder.glob("*.png"))
    roi_files = set(f.name for f in roi_folder.glob("*.png"))

    print(f"Found {len(folder_files)} .png files in output folder: {folder}")
    print(f"Found {len(noisy_files)} .png files in noisy folder: {noisy_folder}")
    print(f"Found {len(roi_files)} .png files in ROI folder: {roi_folder}")

    # Find intersection of filenames
    common_files = sorted(folder_files & roi_files & noisy_files)
    print(f"Found {len(common_files)} matching images in noisy/dehazed/roi folders")
    assert len(common_files) > 0, (
        "No matching .png files in all folders. Cannot proceed."
    )

    metrics = {"CNR": [], "gCNR": [], "KS_A": [], "KS_B": []}
    limits = {
        "CNR": [1.0, 1.5],
        "gCNR": [0.5, 0.8],
        "KS_A": [0.1, 0.3],
        "KS_B": [0.0, 0.5],
    }

    for name in common_files:
        dehazed_path = folder / name
        noisy_path = noisy_folder / name
        roi_path = roi_folder / name

        try:
            img_dehazed = np.array(load_image(str(dehazed_path)))
            img_noisy = np.array(load_image(str(noisy_path)))
        except Exception as e:
            print(f"Error loading image {name}: {e}")
            continue

        # CNR/gCNR
        cnr_gcnr = calculate_cnr_gcnr(img_dehazed, str(roi_path))
        metrics["CNR"].append(cnr_gcnr[0][0])
        metrics["gCNR"].append(cnr_gcnr[0][1])

        # KS statistics
        ks_a, _, ks_b, _ = calculate_ks_statistics(
            img_noisy, img_dehazed, str(roi_path)
        )
        metrics["KS_A"].append(ks_a)
        metrics["KS_B"].append(ks_b)

    # Compute statistics
    stats = {
        k: (np.mean(v), np.std(v), np.min(v), np.max(v)) for k, v in metrics.items()
    }
    print("Contrast statistics:")
    for k, (mean, std, minv, maxv) in stats.items():
        print(f"{k}: mean={mean:.3f}, std={std:.3f}, min={minv:.3f}, max={maxv:.3f}")

    fig = plot_metrics(metrics, limits, "contrast_metrics.png")

    path = Path("contrast_metrics.png")
    save_kwargs = {"bbox_inches": "tight", "dpi": 300}
    fig.savefig(path, **save_kwargs)
    fig.savefig(path.with_suffix(".pdf"), **save_kwargs)
    log.success(f"Metrics plot saved to {log.yellow(path)}")

    # Compute FID
    fid_image_paths = [str(folder / name) for name in common_files]
    fid_score = calculate_fid_score(fid_image_paths, str(reference_folder))
    print(f"FID between {folder} and {reference_folder}: {fid_score:.3f}")

    # Create aggregates dictionary for final score calculation
    aggregates = {
        "fid": float(fid_score),
        "cnr_mean": float(np.mean(metrics["CNR"])),
        "cnr_std": float(np.std(metrics["CNR"])),
        "gcnr_mean": float(np.mean(metrics["gCNR"])),
        "gcnr_std": float(np.std(metrics["gCNR"])),
        "ks_roi1_ksstatistic_mean": float(np.mean(metrics["KS_A"])),
        "ks_roi1_ksstatistic_std": float(np.std(metrics["KS_A"])),
        "ks_roi2_ksstatistic_mean": float(np.mean(metrics["KS_B"])),
        "ks_roi2_ksstatistic_std": float(np.std(metrics["KS_B"])),
    }

    # Calculate final score
    final_score = calculate_final_score(aggregates)
    aggregates["final_score"] = float(final_score)

    return aggregates


if __name__ == "__main__":
    tyro.cli(evaluate)