Spaces:
Running
on
Zero
Running
on
Zero
add sweeper
Browse files- .gitignore +1 -0
- eval.py +21 -2
- sweeper.py +418 -0
.gitignore
CHANGED
|
@@ -5,3 +5,4 @@ temp/
|
|
| 5 |
*.pdf
|
| 6 |
*.hash
|
| 7 |
*.npz
|
|
|
|
|
|
| 5 |
*.pdf
|
| 6 |
*.hash
|
| 7 |
*.npz
|
| 8 |
+
sweep_results/
|
eval.py
CHANGED
|
@@ -208,7 +208,7 @@ def calculate_final_score(aggregates):
|
|
| 208 |
return 0
|
| 209 |
|
| 210 |
|
| 211 |
-
def
|
| 212 |
"""Evaluate the dehazing algorithm.
|
| 213 |
|
| 214 |
Args:
|
|
@@ -294,6 +294,25 @@ def main(folder: str, noisy_folder: str, roi_folder: str, reference_folder: str)
|
|
| 294 |
fid_score = calculate_fid_score(fid_image_paths, str(reference_folder))
|
| 295 |
print(f"FID between {folder} and {reference_folder}: {fid_score:.3f}")
|
| 296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
if __name__ == "__main__":
|
| 299 |
-
tyro.cli(
|
|
|
|
| 208 |
return 0
|
| 209 |
|
| 210 |
|
| 211 |
+
def evaluate(folder: str, noisy_folder: str, roi_folder: str, reference_folder: str):
|
| 212 |
"""Evaluate the dehazing algorithm.
|
| 213 |
|
| 214 |
Args:
|
|
|
|
| 294 |
fid_score = calculate_fid_score(fid_image_paths, str(reference_folder))
|
| 295 |
print(f"FID between {folder} and {reference_folder}: {fid_score:.3f}")
|
| 296 |
|
| 297 |
+
# Create aggregates dictionary for final score calculation
|
| 298 |
+
aggregates = {
|
| 299 |
+
"fid": float(fid_score),
|
| 300 |
+
"cnr_mean": float(np.mean(metrics["CNR"])),
|
| 301 |
+
"cnr_std": float(np.std(metrics["CNR"])),
|
| 302 |
+
"gcnr_mean": float(np.mean(metrics["gCNR"])),
|
| 303 |
+
"gcnr_std": float(np.std(metrics["gCNR"])),
|
| 304 |
+
"ks_roi1_ksstatistic_mean": float(np.mean(metrics["KS_A"])),
|
| 305 |
+
"ks_roi1_ksstatistic_std": float(np.std(metrics["KS_A"])),
|
| 306 |
+
"ks_roi2_ksstatistic_mean": float(np.mean(metrics["KS_B"])),
|
| 307 |
+
"ks_roi2_ksstatistic_std": float(np.std(metrics["KS_B"])),
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
# Calculate final score
|
| 311 |
+
final_score = calculate_final_score(aggregates)
|
| 312 |
+
aggregates["final_score"] = float(final_score)
|
| 313 |
+
|
| 314 |
+
return aggregates
|
| 315 |
+
|
| 316 |
|
| 317 |
if __name__ == "__main__":
|
| 318 |
+
tyro.cli(evaluate)
|
sweeper.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
|
| 3 |
+
NOTE: pip install optuna
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import dataclasses
|
| 8 |
+
import json
|
| 9 |
+
import shutil
|
| 10 |
+
import tempfile
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Any, Dict, Optional
|
| 13 |
+
|
| 14 |
+
import jax
|
| 15 |
+
import numpy as np
|
| 16 |
+
import optuna
|
| 17 |
+
import tyro
|
| 18 |
+
import yaml
|
| 19 |
+
import zea
|
| 20 |
+
from keras import ops
|
| 21 |
+
from PIL import Image
|
| 22 |
+
from zea import init_device, log
|
| 23 |
+
|
| 24 |
+
from eval import evaluate
|
| 25 |
+
from main import init, run
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_images_from_dir(input_folder):
|
| 29 |
+
"""Load images from directory, similar to main.py implementation."""
|
| 30 |
+
paths = list(Path(input_folder).glob("*.png"))
|
| 31 |
+
|
| 32 |
+
images = []
|
| 33 |
+
for path in paths:
|
| 34 |
+
image = zea.io_lib.load_image(path)
|
| 35 |
+
images.append(image)
|
| 36 |
+
|
| 37 |
+
if len(images) == 0:
|
| 38 |
+
raise ValueError(f"No PNG images found in {input_folder}")
|
| 39 |
+
|
| 40 |
+
images = ops.stack(images, axis=0)
|
| 41 |
+
return images, paths
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def save_images_to_temp_dir(images, image_paths, prefix=""):
|
| 45 |
+
"""Save numpy arrays as PNG images to a temporary directory."""
|
| 46 |
+
temp_dir = tempfile.mkdtemp(prefix=prefix)
|
| 47 |
+
temp_dir_path = Path(temp_dir)
|
| 48 |
+
|
| 49 |
+
for i, (img, path) in enumerate(zip(images, image_paths)):
|
| 50 |
+
# Get the filename from the original path
|
| 51 |
+
filename = Path(path).name
|
| 52 |
+
|
| 53 |
+
# Convert image to uint8 if needed
|
| 54 |
+
if img.dtype != np.uint8:
|
| 55 |
+
# Assume image is in [0, 1] range and convert to [0, 255]
|
| 56 |
+
if img.max() <= 1.0:
|
| 57 |
+
img = (img * 255).astype(np.uint8)
|
| 58 |
+
else:
|
| 59 |
+
img = img.astype(np.uint8)
|
| 60 |
+
|
| 61 |
+
# Ensure image is 2D or 3D
|
| 62 |
+
if len(img.shape) == 3 and img.shape[-1] == 1:
|
| 63 |
+
img = img.squeeze(-1)
|
| 64 |
+
|
| 65 |
+
# Save as PNG
|
| 66 |
+
img_pil = Image.fromarray(img)
|
| 67 |
+
save_path = temp_dir_path / filename
|
| 68 |
+
img_pil.save(save_path)
|
| 69 |
+
|
| 70 |
+
return str(temp_dir_path)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@dataclasses.dataclass
|
| 74 |
+
class SweeperConfig:
|
| 75 |
+
"""Configuration for hyperparameter sweeping with Optuna."""
|
| 76 |
+
|
| 77 |
+
# Required paths - no defaults
|
| 78 |
+
input_image_dir: str # Path to input hazy images
|
| 79 |
+
roi_folder: str # Path to ROI mask images
|
| 80 |
+
reference_folder: str # Path to reference/ground truth images
|
| 81 |
+
base_config_path: str = "configs/semantic_dps.yaml"
|
| 82 |
+
|
| 83 |
+
# Base configuration
|
| 84 |
+
method: str = "semantic_dps" # Which method to optimize
|
| 85 |
+
broad_sweep: bool = False # Choose between broad or narrow sweep
|
| 86 |
+
|
| 87 |
+
# Optuna settings
|
| 88 |
+
study_name: str = "dehaze_optimization"
|
| 89 |
+
storage: Optional[str] = None # e.g., "sqlite:///dehaze_study.db" for persistence
|
| 90 |
+
n_trials: int = 100
|
| 91 |
+
|
| 92 |
+
# Optimization settings
|
| 93 |
+
objective_metric: str = "final_score" # Which metric to optimize
|
| 94 |
+
direction: str = "maximize" # "maximize" or "minimize"
|
| 95 |
+
|
| 96 |
+
# Output settings
|
| 97 |
+
output_dir: str = "sweep_results"
|
| 98 |
+
|
| 99 |
+
# Evaluation settings
|
| 100 |
+
skip_fid: bool = False
|
| 101 |
+
|
| 102 |
+
# Device configuration
|
| 103 |
+
device: str = "auto:1"
|
| 104 |
+
|
| 105 |
+
# Pruning settings
|
| 106 |
+
enable_pruning: bool = True
|
| 107 |
+
pruner_type: str = "median" # "median", "hyperband", or "none"
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class OptunaObjective:
|
| 111 |
+
"""Optuna objective function for hyperparameter optimization."""
|
| 112 |
+
|
| 113 |
+
def __init__(self, config: SweeperConfig):
|
| 114 |
+
self.config = config
|
| 115 |
+
self.base_config = self._load_base_config()
|
| 116 |
+
self.hazy_images, self.image_paths = load_images_from_dir(
|
| 117 |
+
config.input_image_dir
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Initialize device
|
| 121 |
+
init_device(config.device)
|
| 122 |
+
|
| 123 |
+
# Initialize the diffusion model once
|
| 124 |
+
self.diffusion_model = init(self.base_config)
|
| 125 |
+
|
| 126 |
+
def _load_base_config(self):
|
| 127 |
+
"""Load base configuration from YAML file."""
|
| 128 |
+
with open(self.config.base_config_path, "r") as f:
|
| 129 |
+
config_dict = yaml.safe_load(f)
|
| 130 |
+
return zea.Config(**config_dict)
|
| 131 |
+
|
| 132 |
+
def _create_trial_params(self, trial: optuna.Trial) -> Dict[str, Any]:
|
| 133 |
+
"""Create trial parameters by suggesting hyperparameters."""
|
| 134 |
+
params = {
|
| 135 |
+
"guidance_kwargs": {
|
| 136 |
+
"omega": trial.suggest_float("omega", 0.5, 50.0, log=True),
|
| 137 |
+
"omega_vent": trial.suggest_float("omega_vent", 0.0001, 50.0, log=True),
|
| 138 |
+
"omega_sept": trial.suggest_float("omega_sept", 0.1, 50.0, log=True),
|
| 139 |
+
"omega_dark": trial.suggest_float("omega_dark", 0.001, 50.0, log=True),
|
| 140 |
+
"eta": trial.suggest_float("eta", 0.001, 1.0, log=True),
|
| 141 |
+
"smooth_l1_beta": trial.suggest_float(
|
| 142 |
+
"smooth_l1_beta", 0.1, 10.0, log=True
|
| 143 |
+
),
|
| 144 |
+
},
|
| 145 |
+
"skeleton_params": {
|
| 146 |
+
"sigma_pre": trial.suggest_float("skeleton_sigma_pre", 0.0, 10.0),
|
| 147 |
+
"sigma_post": trial.suggest_float("skeleton_sigma_post", 0.0, 10.0),
|
| 148 |
+
"threshold": trial.suggest_float("skeleton_threshold", 0.0, 1.0),
|
| 149 |
+
},
|
| 150 |
+
"mask_params": {
|
| 151 |
+
"threshold": trial.suggest_float("mask_threshold", 0.0, 1.0),
|
| 152 |
+
"sigma": trial.suggest_float("mask_sigma", 0.0, 10.0),
|
| 153 |
+
},
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
# Add base config parameters that aren't being optimized
|
| 157 |
+
if hasattr(self.base_config, "params"):
|
| 158 |
+
base_params = self.base_config.params
|
| 159 |
+
for key, value in base_params.items():
|
| 160 |
+
if key not in params:
|
| 161 |
+
params[key] = value
|
| 162 |
+
|
| 163 |
+
return params
|
| 164 |
+
|
| 165 |
+
def __call__(self, trial: optuna.Trial) -> float:
|
| 166 |
+
"""Optuna objective function."""
|
| 167 |
+
# Suggest hyperparameters for this trial
|
| 168 |
+
params = self._create_trial_params(trial)
|
| 169 |
+
|
| 170 |
+
# Create seed for reproducibility
|
| 171 |
+
seed = jax.random.PRNGKey(self.base_config.seed + trial.number)
|
| 172 |
+
|
| 173 |
+
# Run the semantic DPS method
|
| 174 |
+
try:
|
| 175 |
+
hazy_images, pred_tissue_images, pred_haze_images, masks = run(
|
| 176 |
+
hazy_images=self.hazy_images,
|
| 177 |
+
diffusion_model=self.diffusion_model,
|
| 178 |
+
seed=seed,
|
| 179 |
+
**params,
|
| 180 |
+
)
|
| 181 |
+
except Exception as e:
|
| 182 |
+
log.error(f"Error during model inference: {e}")
|
| 183 |
+
return 0.0
|
| 184 |
+
|
| 185 |
+
# Convert tensors to numpy arrays if needed
|
| 186 |
+
if hasattr(pred_tissue_images, "numpy"):
|
| 187 |
+
pred_tissue_images = pred_tissue_images.numpy()
|
| 188 |
+
|
| 189 |
+
# Initialize temp directory
|
| 190 |
+
pred_tissue_temp_dir = None
|
| 191 |
+
|
| 192 |
+
try:
|
| 193 |
+
# Save predicted tissue images to temp directory
|
| 194 |
+
pred_tissue_temp_dir = save_images_to_temp_dir(
|
| 195 |
+
pred_tissue_images, self.image_paths, prefix="pred_tissue_"
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Run evaluation using the updated evaluate function
|
| 199 |
+
results = evaluate(
|
| 200 |
+
folder=pred_tissue_temp_dir,
|
| 201 |
+
noisy_folder=self.config.input_image_dir,
|
| 202 |
+
roi_folder=self.config.roi_folder,
|
| 203 |
+
reference_folder=self.config.reference_folder,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
objective_value = results[self.config.objective_metric]
|
| 207 |
+
|
| 208 |
+
except Exception as e:
|
| 209 |
+
log.error(f"Error during evaluation: {e}")
|
| 210 |
+
objective_value = 0.0
|
| 211 |
+
|
| 212 |
+
finally:
|
| 213 |
+
# Clean up temporary directory
|
| 214 |
+
if pred_tissue_temp_dir and Path(pred_tissue_temp_dir).exists():
|
| 215 |
+
try:
|
| 216 |
+
shutil.rmtree(pred_tissue_temp_dir)
|
| 217 |
+
except Exception as e:
|
| 218 |
+
log.warning(
|
| 219 |
+
f"Failed to clean up temp directory {pred_tissue_temp_dir}: {e}"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Log intermediate results for potential pruning
|
| 223 |
+
trial.report(objective_value, step=0)
|
| 224 |
+
|
| 225 |
+
# Check if trial should be pruned
|
| 226 |
+
if trial.should_prune():
|
| 227 |
+
raise optuna.TrialPruned()
|
| 228 |
+
|
| 229 |
+
# Store hyperparameters as user attributes
|
| 230 |
+
for key, value in params.items():
|
| 231 |
+
if isinstance(value, dict):
|
| 232 |
+
for subkey, subvalue in value.items():
|
| 233 |
+
trial.set_user_attr(f"{key}_{subkey}", subvalue)
|
| 234 |
+
else:
|
| 235 |
+
trial.set_user_attr(key, value)
|
| 236 |
+
|
| 237 |
+
log.info(
|
| 238 |
+
f"Trial {trial.number}: {self.config.objective_metric} = {objective_value:.4f}"
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
return objective_value
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def create_pruner(pruner_type: str) -> optuna.pruners.BasePruner:
|
| 245 |
+
"""Create an Optuna pruner based on the specified type."""
|
| 246 |
+
if pruner_type == "median":
|
| 247 |
+
return optuna.pruners.MedianPruner(
|
| 248 |
+
n_startup_trials=5, n_warmup_steps=0, interval_steps=1
|
| 249 |
+
)
|
| 250 |
+
elif pruner_type == "hyperband":
|
| 251 |
+
return optuna.pruners.HyperbandPruner(
|
| 252 |
+
min_resource=1, max_resource=100, reduction_factor=3
|
| 253 |
+
)
|
| 254 |
+
else:
|
| 255 |
+
return optuna.pruners.NopPruner()
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def run_optimization(config: SweeperConfig):
|
| 259 |
+
"""Run hyperparameter optimization using Optuna."""
|
| 260 |
+
|
| 261 |
+
# Create pruner
|
| 262 |
+
pruner = create_pruner(config.pruner_type) if config.enable_pruning else None
|
| 263 |
+
|
| 264 |
+
# Create or load study
|
| 265 |
+
study = optuna.create_study(
|
| 266 |
+
study_name=config.study_name,
|
| 267 |
+
storage=config.storage,
|
| 268 |
+
direction=config.direction,
|
| 269 |
+
pruner=pruner,
|
| 270 |
+
load_if_exists=True,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
log.info(f"Starting optimization for method: {config.method}")
|
| 274 |
+
log.info(f"Study name: {config.study_name}")
|
| 275 |
+
log.info(f"Number of trials: {config.n_trials}")
|
| 276 |
+
log.info(f"Objective metric: {config.objective_metric} ({config.direction})")
|
| 277 |
+
|
| 278 |
+
# Create objective function
|
| 279 |
+
objective = OptunaObjective(config)
|
| 280 |
+
|
| 281 |
+
# Run optimization
|
| 282 |
+
study.optimize(objective, n_trials=config.n_trials)
|
| 283 |
+
|
| 284 |
+
# Save results
|
| 285 |
+
output_dir = Path(config.output_dir)
|
| 286 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 287 |
+
|
| 288 |
+
# Save best trial info
|
| 289 |
+
best_trial = study.best_trial
|
| 290 |
+
best_results = {
|
| 291 |
+
"best_value": best_trial.value,
|
| 292 |
+
"best_params": best_trial.params,
|
| 293 |
+
"best_user_attrs": best_trial.user_attrs,
|
| 294 |
+
"study_stats": {
|
| 295 |
+
"n_trials": len(study.trials),
|
| 296 |
+
"n_complete_trials": len(
|
| 297 |
+
[t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE]
|
| 298 |
+
),
|
| 299 |
+
"n_pruned_trials": len(
|
| 300 |
+
[t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]
|
| 301 |
+
),
|
| 302 |
+
"n_failed_trials": len(
|
| 303 |
+
[t for t in study.trials if t.state == optuna.trial.TrialState.FAIL]
|
| 304 |
+
),
|
| 305 |
+
},
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
with open(
|
| 309 |
+
output_dir / f"best_results_{config.method}_{config.study_name}.json", "w"
|
| 310 |
+
) as f:
|
| 311 |
+
json.dump(best_results, f, indent=2)
|
| 312 |
+
|
| 313 |
+
# Save all trials data
|
| 314 |
+
trials_data = []
|
| 315 |
+
for trial in study.trials:
|
| 316 |
+
trial_data = {
|
| 317 |
+
"number": trial.number,
|
| 318 |
+
"value": trial.value,
|
| 319 |
+
"params": trial.params,
|
| 320 |
+
"user_attrs": trial.user_attrs,
|
| 321 |
+
"state": trial.state.name,
|
| 322 |
+
"datetime_start": trial.datetime_start.isoformat()
|
| 323 |
+
if trial.datetime_start
|
| 324 |
+
else None,
|
| 325 |
+
"datetime_complete": trial.datetime_complete.isoformat()
|
| 326 |
+
if trial.datetime_complete
|
| 327 |
+
else None,
|
| 328 |
+
}
|
| 329 |
+
trials_data.append(trial_data)
|
| 330 |
+
|
| 331 |
+
with open(
|
| 332 |
+
output_dir / f"all_trials_{config.method}_{config.study_name}.json", "w"
|
| 333 |
+
) as f:
|
| 334 |
+
json.dump(trials_data, f, indent=2)
|
| 335 |
+
|
| 336 |
+
# Print summary
|
| 337 |
+
log.success("Optimization completed!")
|
| 338 |
+
log.info(f"Best {config.objective_metric}: {best_trial.value:.4f}")
|
| 339 |
+
log.info("Best parameters:")
|
| 340 |
+
for key, value in best_trial.params.items():
|
| 341 |
+
log.info(f" {key}: {value}")
|
| 342 |
+
|
| 343 |
+
# Print study statistics
|
| 344 |
+
stats = best_results["study_stats"]
|
| 345 |
+
log.info("Study statistics:")
|
| 346 |
+
log.info(f" Total trials: {stats['n_trials']}")
|
| 347 |
+
log.info(f" Complete trials: {stats['n_complete_trials']}")
|
| 348 |
+
log.info(f" Pruned trials: {stats['n_pruned_trials']}")
|
| 349 |
+
log.info(f" Failed trials: {stats['n_failed_trials']}")
|
| 350 |
+
|
| 351 |
+
return study
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def main():
|
| 355 |
+
"""Main function for running hyperparameter optimization."""
|
| 356 |
+
config = tyro.cli(SweeperConfig)
|
| 357 |
+
|
| 358 |
+
# Validate required paths exist
|
| 359 |
+
required_paths = [
|
| 360 |
+
(config.input_image_dir, "Input image directory"),
|
| 361 |
+
(config.roi_folder, "ROI folder"),
|
| 362 |
+
(config.reference_folder, "Reference folder"),
|
| 363 |
+
]
|
| 364 |
+
|
| 365 |
+
for path, description in required_paths:
|
| 366 |
+
if not Path(path).exists():
|
| 367 |
+
raise FileNotFoundError(f"{description} not found: {path}")
|
| 368 |
+
|
| 369 |
+
# Set visualization style
|
| 370 |
+
zea.visualize.set_mpl_style()
|
| 371 |
+
|
| 372 |
+
# Run optimization
|
| 373 |
+
study = run_optimization(config)
|
| 374 |
+
|
| 375 |
+
# Optionally, generate optimization plots
|
| 376 |
+
try:
|
| 377 |
+
import matplotlib.pyplot as plt
|
| 378 |
+
import optuna.visualization as vis
|
| 379 |
+
|
| 380 |
+
output_dir = Path(config.output_dir)
|
| 381 |
+
|
| 382 |
+
# Plot optimization history
|
| 383 |
+
fig = vis.matplotlib.plot_optimization_history(study).figure
|
| 384 |
+
fig.savefig(
|
| 385 |
+
output_dir / f"optimization_history_{config.method}.png",
|
| 386 |
+
dpi=300,
|
| 387 |
+
bbox_inches="tight",
|
| 388 |
+
)
|
| 389 |
+
plt.close(fig)
|
| 390 |
+
|
| 391 |
+
# Plot parameter importances
|
| 392 |
+
fig = vis.matplotlib.plot_param_importances(study).figure
|
| 393 |
+
fig.savefig(
|
| 394 |
+
output_dir / f"param_importances_{config.method}.png",
|
| 395 |
+
dpi=300,
|
| 396 |
+
bbox_inches="tight",
|
| 397 |
+
)
|
| 398 |
+
plt.close(fig)
|
| 399 |
+
|
| 400 |
+
# Plot parallel coordinate
|
| 401 |
+
fig = vis.matplotlib.plot_parallel_coordinate(study).figure
|
| 402 |
+
fig.savefig(
|
| 403 |
+
output_dir / f"parallel_coordinate_{config.method}.png",
|
| 404 |
+
dpi=300,
|
| 405 |
+
bbox_inches="tight",
|
| 406 |
+
)
|
| 407 |
+
plt.close(fig)
|
| 408 |
+
|
| 409 |
+
log.success(f"Optimization plots saved to {output_dir}")
|
| 410 |
+
|
| 411 |
+
except ImportError:
|
| 412 |
+
log.warning(
|
| 413 |
+
"Optuna visualization not available. Install with: pip install optuna[visualization]"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
if __name__ == "__main__":
|
| 418 |
+
main()
|