Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						c6509f9
	
1
								Parent(s):
							
							cd55902
								
updated
Browse files- .app.py.swp +0 -0
 - app.py +45 -8
 
    	
        .app.py.swp
    ADDED
    
    | 
         Binary file (4.1 kB). View file 
     | 
| 
         | 
    	
        app.py
    CHANGED
    
    | 
         @@ -2,24 +2,61 @@ from fastapi import FastAPI 
     | 
|
| 2 | 
         
             
            from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
         
     | 
| 3 | 
         
             
            from peft import PeftModel
         
     | 
| 4 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 5 | 
         | 
| 6 | 
         
             
            app = FastAPI()
         
     | 
| 7 | 
         | 
| 8 | 
         
            -
            #  
     | 
| 9 | 
         
             
            base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
         
     | 
| 10 | 
         
             
            adapter_path = "thinkingnew/llama_invs_adapter"
         
     | 
| 11 | 
         | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 16 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(base_model_path)
         
     | 
| 17 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 18 | 
         
             
            @app.get("/")
         
     | 
| 19 | 
         
             
            async def root():
         
     | 
| 20 | 
         
             
                return {"message": "Model is running! Use /generate/ for text generation."}
         
     | 
| 
         | 
|
| 
         | 
|
| 21 | 
         
             
            @app.post("/generate/")
         
     | 
| 22 | 
         
             
            async def generate_text(prompt: str):
         
     | 
| 23 | 
         
            -
                 
     | 
| 24 | 
         
            -
                 
     | 
| 25 | 
         
            -
                return {"response": result[0]['generated_text']}
         
     | 
| 
         | 
|
| 2 | 
         
             
            from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
         
     | 
| 3 | 
         
             
            from peft import PeftModel
         
     | 
| 4 | 
         
             
            import torch
         
     | 
| 5 | 
         
            +
            import os
         
     | 
| 6 | 
         | 
| 7 | 
         
             
            app = FastAPI()
         
     | 
| 8 | 
         | 
| 9 | 
         
            +
            # Define paths
         
     | 
| 10 | 
         
             
            base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
         
     | 
| 11 | 
         
             
            adapter_path = "thinkingnew/llama_invs_adapter"
         
     | 
| 12 | 
         | 
| 13 | 
         
            +
            # Check if GPU is available
         
     | 
| 14 | 
         
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            # Create offload directory if running on CPU
         
     | 
| 17 | 
         
            +
            offload_dir = "./offload"
         
     | 
| 18 | 
         
            +
            os.makedirs(offload_dir, exist_ok=True)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            # Load base model
         
     | 
| 21 | 
         
            +
            try:
         
     | 
| 22 | 
         
            +
                base_model = AutoModelForCausalLM.from_pretrained(
         
     | 
| 23 | 
         
            +
                    base_model_path,
         
     | 
| 24 | 
         
            +
                    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
         
     | 
| 25 | 
         
            +
                    device_map="auto",
         
     | 
| 26 | 
         
            +
                    offload_folder=offload_dir if device == "cpu" else None  # Offload to disk if running on CPU
         
     | 
| 27 | 
         
            +
                )
         
     | 
| 28 | 
         
            +
            except Exception as e:
         
     | 
| 29 | 
         
            +
                print(f"Error loading base model: {e}")
         
     | 
| 30 | 
         
            +
                raise
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            # Load adapter
         
     | 
| 33 | 
         
            +
            try:
         
     | 
| 34 | 
         
            +
                model = PeftModel.from_pretrained(
         
     | 
| 35 | 
         
            +
                    base_model, adapter_path, offload_dir=offload_dir if device == "cpu" else None
         
     | 
| 36 | 
         
            +
                )
         
     | 
| 37 | 
         
            +
            except Exception as e:
         
     | 
| 38 | 
         
            +
                print(f"Error loading adapter: {e}")
         
     | 
| 39 | 
         
            +
                raise
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            # Load tokenizer
         
     | 
| 42 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(base_model_path)
         
     | 
| 43 | 
         | 
| 44 | 
         
            +
            # Load pipeline once for better performance
         
     | 
| 45 | 
         
            +
            text_pipe = pipeline(
         
     | 
| 46 | 
         
            +
                task="text-generation",
         
     | 
| 47 | 
         
            +
                model=model,
         
     | 
| 48 | 
         
            +
                tokenizer=tokenizer,
         
     | 
| 49 | 
         
            +
                max_length=512,
         
     | 
| 50 | 
         
            +
                device=0 if device == "cuda" else -1
         
     | 
| 51 | 
         
            +
            )
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            # Root endpoint for testing
         
     | 
| 54 | 
         
             
            @app.get("/")
         
     | 
| 55 | 
         
             
            async def root():
         
     | 
| 56 | 
         
             
                return {"message": "Model is running! Use /generate/ for text generation."}
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            # Text generation endpoint
         
     | 
| 59 | 
         
             
            @app.post("/generate/")
         
     | 
| 60 | 
         
             
            async def generate_text(prompt: str):
         
     | 
| 61 | 
         
            +
                result = text_pipe(f"<s>[INST] {prompt} [/INST]")
         
     | 
| 62 | 
         
            +
                return {"response": result[0]['generated_text']}
         
     | 
| 
         |