Spaces:
Runtime error
Runtime error
Commit
·
cd55902
1
Parent(s):
589af9a
updated
Browse files
app.py
CHANGED
|
@@ -2,51 +2,24 @@ from fastapi import FastAPI
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
-
#
|
| 10 |
base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
|
| 11 |
adapter_path = "thinkingnew/llama_invs_adapter"
|
| 12 |
|
| 13 |
-
# Check if GPU is available
|
| 14 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
-
|
| 16 |
-
# Create offload folder if needed
|
| 17 |
-
offload_dir = "./offload"
|
| 18 |
-
os.makedirs(offload_dir, exist_ok=True)
|
| 19 |
-
|
| 20 |
-
# Load base model with offloading support
|
| 21 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
-
base_model_path,
|
| 23 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 24 |
-
device_map="auto",
|
| 25 |
-
offload_folder=offload_dir if device == "cpu" else None # Offload to disk if running on CPU
|
| 26 |
)
|
| 27 |
-
|
| 28 |
-
# Load adapter
|
| 29 |
model = PeftModel.from_pretrained(base_model, adapter_path)
|
| 30 |
-
|
| 31 |
-
# Load tokenizer
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 33 |
|
| 34 |
-
# Load pipeline once for better performance
|
| 35 |
-
text_pipe = pipeline(
|
| 36 |
-
task="text-generation",
|
| 37 |
-
model=model,
|
| 38 |
-
tokenizer=tokenizer,
|
| 39 |
-
max_length=512,
|
| 40 |
-
device=0 if device == "cuda" else -1 # Use GPU index 0 if available, otherwise CPU
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
# Root endpoint for testing
|
| 44 |
@app.get("/")
|
| 45 |
async def root():
|
| 46 |
return {"message": "Model is running! Use /generate/ for text generation."}
|
| 47 |
-
|
| 48 |
-
# Text generation endpoint
|
| 49 |
@app.post("/generate/")
|
| 50 |
async def generate_text(prompt: str):
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
app = FastAPI()
|
| 7 |
|
| 8 |
+
# Load Model from Hugging Face Hub
|
| 9 |
base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
|
| 10 |
adapter_path = "thinkingnew/llama_invs_adapter"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
base_model_path, torch_dtype=torch.float16, device_map="auto"
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
|
|
|
|
|
|
| 15 |
model = PeftModel.from_pretrained(base_model, adapter_path)
|
|
|
|
|
|
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@app.get("/")
|
| 19 |
async def root():
|
| 20 |
return {"message": "Model is running! Use /generate/ for text generation."}
|
|
|
|
|
|
|
| 21 |
@app.post("/generate/")
|
| 22 |
async def generate_text(prompt: str):
|
| 23 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
| 24 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
| 25 |
+
return {"response": result[0]['generated_text']}
|