Spaces:
Sleeping
Sleeping
Updated app.py
#2
by
Shan41
- opened
app.py
CHANGED
|
@@ -1,563 +1,831 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from huggingface_hub import hf_hub_download
|
| 3 |
-
import pickle
|
| 4 |
-
from gradio import Progress
|
| 5 |
-
import numpy as np
|
| 6 |
-
import subprocess
|
| 7 |
-
import shutil
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
from sklearn.metrics import roc_curve, auc
|
| 10 |
-
import pandas as pd
|
| 11 |
-
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
#
|
| 22 |
-
#
|
| 23 |
-
#
|
| 24 |
-
#
|
| 25 |
-
#
|
| 26 |
-
# shutil.copyfile(
|
| 27 |
-
# shutil.copyfile(
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
test_info
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
indices
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
test
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
#
|
| 119 |
-
#
|
| 120 |
-
#
|
| 121 |
-
#
|
| 122 |
-
#
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
"
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# Read data from test_info.txt
|
| 162 |
-
with open(test_info_location, "r") as file:
|
| 163 |
-
data = file.readlines()
|
| 164 |
-
|
| 165 |
-
# Assuming test_info[7] is a list with ideal tasks for each instance
|
| 166 |
-
ideal_tasks = test_info[6] # A list where each element is either 1 or 2
|
| 167 |
-
|
| 168 |
-
# Initialize counters
|
| 169 |
-
task_counts = {
|
| 170 |
-
1: {"
|
| 171 |
-
2: {"
|
| 172 |
-
}
|
| 173 |
-
|
| 174 |
-
# Analyze rows
|
| 175 |
-
for i, row in enumerate(data):
|
| 176 |
-
row = row.strip()
|
| 177 |
-
if not row:
|
| 178 |
-
continue
|
| 179 |
-
|
| 180 |
-
ideal_task = ideal_tasks[i] # Get the ideal task for the current row
|
| 181 |
-
opt1_done, opt2_done = analyze_row(row)
|
| 182 |
-
|
| 183 |
-
if ideal_task == 0:
|
| 184 |
-
if opt1_done and not opt2_done:
|
| 185 |
-
task_counts[1]["
|
| 186 |
-
elif not opt1_done and opt2_done:
|
| 187 |
-
task_counts[1]["
|
| 188 |
-
elif opt1_done and opt2_done:
|
| 189 |
-
task_counts[1]["both"] += 1
|
| 190 |
-
else:
|
| 191 |
-
task_counts[1]["none"] +=1
|
| 192 |
-
elif ideal_task == 1:
|
| 193 |
-
if opt1_done and not opt2_done:
|
| 194 |
-
task_counts[2]["
|
| 195 |
-
elif not opt1_done and opt2_done:
|
| 196 |
-
task_counts[2]["
|
| 197 |
-
elif opt1_done and opt2_done:
|
| 198 |
-
task_counts[2]["both"] += 1
|
| 199 |
-
else:
|
| 200 |
-
task_counts[2]["none"] +=1
|
| 201 |
-
|
| 202 |
-
# Create a string output for results
|
| 203 |
-
# output_summary = "Task Analysis Summary:\n"
|
| 204 |
-
# output_summary += "-----------------------\n"
|
| 205 |
-
|
| 206 |
-
# for ideal_task, counts in task_counts.items():
|
| 207 |
-
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
| 208 |
-
# output_summary += f" Only OptionalTask_1 done: {counts['
|
| 209 |
-
# output_summary += f" Only OptionalTask_2 done: {counts['
|
| 210 |
-
# output_summary += f" Both done: {counts['both']}\n"
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
#
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
#
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
.
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
}
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
}
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
.
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
color:
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
align
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
font-
|
| 514 |
-
font-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
import pickle
|
| 4 |
+
from gradio import Progress
|
| 5 |
+
import numpy as np
|
| 6 |
+
import subprocess
|
| 7 |
+
import shutil
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from sklearn.metrics import roc_curve, auc
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import plotly.graph_objects as go
|
| 12 |
+
from sklearn.metrics import roc_auc_score
|
| 13 |
+
from matplotlib.figure import Figure
|
| 14 |
+
# Define the function to process the input file and model selection
|
| 15 |
+
|
| 16 |
+
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
| 17 |
+
# progress = gr.Progress(track_tqdm=True)
|
| 18 |
+
|
| 19 |
+
progress(0, desc="Starting the processing")
|
| 20 |
+
# with open(file.name, 'r') as f:
|
| 21 |
+
# content = f.read()
|
| 22 |
+
# saved_test_dataset = "train.txt"
|
| 23 |
+
# saved_test_label = "train_label.txt"
|
| 24 |
+
# saved_train_info="train_info.txt"
|
| 25 |
+
# Save the uploaded file content to a specified location
|
| 26 |
+
# shutil.copyfile(file.name, saved_test_dataset)
|
| 27 |
+
# shutil.copyfile(label.name, saved_test_label)
|
| 28 |
+
# shutil.copyfile(info.name, saved_train_info)
|
| 29 |
+
parent_location="ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/"
|
| 30 |
+
test_info_location=parent_location+"fullTest/test_info.txt"
|
| 31 |
+
test_location=parent_location+"fullTest/test.txt"
|
| 32 |
+
if(model_name=="ASTRA-FT-HGR"):
|
| 33 |
+
finetune_task="highGRschool10"
|
| 34 |
+
# test_info_location=parent_location+"fullTest/test_info.txt"
|
| 35 |
+
# test_location=parent_location+"fullTest/test.txt"
|
| 36 |
+
elif(model_name== "ASTRA-FT-LGR" ):
|
| 37 |
+
finetune_task="lowGRschoolAll"
|
| 38 |
+
# test_info_location=parent_location+"lowGRschoolAll/test_info.txt"
|
| 39 |
+
# test_location=parent_location+"lowGRschoolAll/test.txt"
|
| 40 |
+
elif(model_name=="ASTRA-FT-FULL"):
|
| 41 |
+
# test_info_location=parent_location+"fullTest/test_info.txt"
|
| 42 |
+
# test_location=parent_location+"fullTest/test.txt"
|
| 43 |
+
finetune_task="fullTest"
|
| 44 |
+
else:
|
| 45 |
+
finetune_task=None
|
| 46 |
+
# Load the test_info file and the graduation rate file
|
| 47 |
+
test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')
|
| 48 |
+
grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data
|
| 49 |
+
|
| 50 |
+
# Step 1: Extract unique school numbers from test_info
|
| 51 |
+
unique_schools = test_info[0].unique()
|
| 52 |
+
|
| 53 |
+
# Step 2: Filter the grad_rate_data using the unique school numbers
|
| 54 |
+
schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]
|
| 55 |
+
|
| 56 |
+
# Define a threshold for high and low graduation rates (adjust as needed)
|
| 57 |
+
grad_rate_threshold = 0.9
|
| 58 |
+
|
| 59 |
+
# Step 4: Divide schools into high and low graduation rate groups
|
| 60 |
+
high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()
|
| 61 |
+
low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()
|
| 62 |
+
|
| 63 |
+
# Step 5: Sample percentage of schools from each group
|
| 64 |
+
high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
|
| 65 |
+
low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
|
| 66 |
+
|
| 67 |
+
# Step 6: Combine the sampled schools
|
| 68 |
+
random_schools = high_sample + low_sample
|
| 69 |
+
|
| 70 |
+
# Step 7: Get indices for the sampled schools
|
| 71 |
+
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
| 72 |
+
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
|
| 73 |
+
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
|
| 74 |
+
|
| 75 |
+
# Load the test file and select rows based on indices
|
| 76 |
+
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
| 77 |
+
selected_rows_df2 = test.loc[indices]
|
| 78 |
+
|
| 79 |
+
# Save the selected rows to a file
|
| 80 |
+
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
| 81 |
+
|
| 82 |
+
graduation_groups = [
|
| 83 |
+
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
|
| 84 |
+
]
|
| 85 |
+
# Group data by opt_task1 and opt_task2 based on test_info[6]
|
| 86 |
+
opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]
|
| 87 |
+
|
| 88 |
+
with open("roc_data2.pkl", 'rb') as file:
|
| 89 |
+
data = pickle.load(file)
|
| 90 |
+
t_label=data[0]
|
| 91 |
+
p_label=data[1]
|
| 92 |
+
# Step 1: Align graduation_group, t_label, and p_label
|
| 93 |
+
aligned_labels = list(zip(graduation_groups, t_label, p_label))
|
| 94 |
+
opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))
|
| 95 |
+
# Step 2: Separate the labels for high and low groups
|
| 96 |
+
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
|
| 97 |
+
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
|
| 98 |
+
|
| 99 |
+
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
|
| 100 |
+
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
|
| 101 |
+
|
| 102 |
+
opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']
|
| 103 |
+
opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']
|
| 104 |
+
|
| 105 |
+
opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']
|
| 106 |
+
opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']
|
| 107 |
+
|
| 108 |
+
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
|
| 109 |
+
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
|
| 110 |
+
|
| 111 |
+
opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None
|
| 112 |
+
opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None
|
| 113 |
+
|
| 114 |
+
# For demonstration purposes, we'll just return the content with the selected model name
|
| 115 |
+
|
| 116 |
+
# print(checkpoint)
|
| 117 |
+
progress(0.1, desc="Files created and saved")
|
| 118 |
+
# if (inc_val<5):
|
| 119 |
+
# model_name="highGRschool10"
|
| 120 |
+
# elif(inc_val>=5 & inc_val<10):
|
| 121 |
+
# model_name="highGRschool10"
|
| 122 |
+
# else:
|
| 123 |
+
# model_name="highGRschool10"
|
| 124 |
+
# Function to analyze each row
|
| 125 |
+
def analyze_row(row):
|
| 126 |
+
# Split the row into fields
|
| 127 |
+
fields = row.split("\t")
|
| 128 |
+
|
| 129 |
+
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
|
| 130 |
+
optional_task_1_subtasks = ["DenominatorFactor", "NumeratorFactor", "EquationAnswer"]
|
| 131 |
+
optional_task_2_subtasks = [
|
| 132 |
+
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
|
| 133 |
+
"SecondRow", "ThirdRow"
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
# Helper function to evaluate task attempts
|
| 137 |
+
def evaluate_tasks(fields, tasks):
|
| 138 |
+
task_status = {}
|
| 139 |
+
for task in tasks:
|
| 140 |
+
relevant_attempts = [f for f in fields if task in f]
|
| 141 |
+
if any("OK" in attempt for attempt in relevant_attempts):
|
| 142 |
+
task_status[task] = "Attempted (Successful)"
|
| 143 |
+
elif any("ERROR" in attempt for attempt in relevant_attempts):
|
| 144 |
+
task_status[task] = "Attempted (Error)"
|
| 145 |
+
elif any("JIT" in attempt for attempt in relevant_attempts):
|
| 146 |
+
task_status[task] = "Attempted (JIT)"
|
| 147 |
+
else:
|
| 148 |
+
task_status[task] = "Unattempted"
|
| 149 |
+
return task_status
|
| 150 |
+
|
| 151 |
+
# Evaluate tasks for each category
|
| 152 |
+
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
|
| 153 |
+
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
|
| 154 |
+
|
| 155 |
+
# Check if tasks have any successful attempt
|
| 156 |
+
opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values())
|
| 157 |
+
opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values())
|
| 158 |
+
|
| 159 |
+
return opt1_done, opt2_done
|
| 160 |
+
|
| 161 |
+
# Read data from test_info.txt
|
| 162 |
+
with open(test_info_location, "r") as file:
|
| 163 |
+
data = file.readlines()
|
| 164 |
+
|
| 165 |
+
# Assuming test_info[7] is a list with ideal tasks for each instance
|
| 166 |
+
ideal_tasks = test_info[6] # A list where each element is either 1 or 2
|
| 167 |
+
|
| 168 |
+
# Initialize counters
|
| 169 |
+
task_counts = {
|
| 170 |
+
1: {"ER": 0, "ME": 0, "both": 0,"none":0},
|
| 171 |
+
2: {"ER": 0, "ME": 0, "both": 0,"none":0}
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
# Analyze rows
|
| 175 |
+
for i, row in enumerate(data):
|
| 176 |
+
row = row.strip()
|
| 177 |
+
if not row:
|
| 178 |
+
continue
|
| 179 |
+
|
| 180 |
+
ideal_task = ideal_tasks[i] # Get the ideal task for the current row
|
| 181 |
+
opt1_done, opt2_done = analyze_row(row)
|
| 182 |
+
|
| 183 |
+
if ideal_task == 0:
|
| 184 |
+
if opt1_done and not opt2_done:
|
| 185 |
+
task_counts[1]["ER"] += 1
|
| 186 |
+
elif not opt1_done and opt2_done:
|
| 187 |
+
task_counts[1]["ME"] += 1
|
| 188 |
+
elif opt1_done and opt2_done:
|
| 189 |
+
task_counts[1]["both"] += 1
|
| 190 |
+
else:
|
| 191 |
+
task_counts[1]["none"] +=1
|
| 192 |
+
elif ideal_task == 1:
|
| 193 |
+
if opt1_done and not opt2_done:
|
| 194 |
+
task_counts[2]["ER"] += 1
|
| 195 |
+
elif not opt1_done and opt2_done:
|
| 196 |
+
task_counts[2]["ME"] += 1
|
| 197 |
+
elif opt1_done and opt2_done:
|
| 198 |
+
task_counts[2]["both"] += 1
|
| 199 |
+
else:
|
| 200 |
+
task_counts[2]["none"] +=1
|
| 201 |
+
|
| 202 |
+
# Create a string output for results
|
| 203 |
+
# output_summary = "Task Analysis Summary:\n"
|
| 204 |
+
# output_summary += "-----------------------\n"
|
| 205 |
+
|
| 206 |
+
# for ideal_task, counts in task_counts.items():
|
| 207 |
+
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
| 208 |
+
# output_summary += f" Only OptionalTask_1 done: {counts['ER']}\n"
|
| 209 |
+
# output_summary += f" Only OptionalTask_2 done: {counts['ME']}\n"
|
| 210 |
+
# output_summary += f" Both done: {counts['both']}\n"
|
| 211 |
+
|
| 212 |
+
# colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
|
| 213 |
+
colors = ["#FF6F61", "#6B5B95", "#88B04B", "#F7CAC9"]
|
| 214 |
+
|
| 215 |
+
# Generate pie chart for Task 1
|
| 216 |
+
task1_labels = list(task_counts[1].keys())
|
| 217 |
+
task1_values = list(task_counts[1].values())
|
| 218 |
+
|
| 219 |
+
# fig_task1 = Figure()
|
| 220 |
+
# ax1 = fig_task1.add_subplot(1, 1, 1)
|
| 221 |
+
# ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
|
| 222 |
+
# ax1.set_title('Ideal Task 1 Distribution')
|
| 223 |
+
|
| 224 |
+
fig_task1 = go.Figure(data=[go.Pie(
|
| 225 |
+
labels=task1_labels,
|
| 226 |
+
values=task1_values,
|
| 227 |
+
textinfo='percent+label',
|
| 228 |
+
textposition='auto',
|
| 229 |
+
marker=dict(colors=colors),
|
| 230 |
+
sort=False
|
| 231 |
+
|
| 232 |
+
)])
|
| 233 |
+
|
| 234 |
+
fig_task1.update_layout(
|
| 235 |
+
title='Problem Type: ER',
|
| 236 |
+
title_x=0.5,
|
| 237 |
+
font=dict(
|
| 238 |
+
family="sans-serif",
|
| 239 |
+
size=12,
|
| 240 |
+
color="black"
|
| 241 |
+
),
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
fig_task1.update_layout(
|
| 245 |
+
legend=dict(
|
| 246 |
+
font=dict(
|
| 247 |
+
family="sans-serif",
|
| 248 |
+
size=12,
|
| 249 |
+
color="black"
|
| 250 |
+
),
|
| 251 |
+
)
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# fig.show()
|
| 257 |
+
|
| 258 |
+
# Generate pie chart for Task 2
|
| 259 |
+
task2_labels = list(task_counts[2].keys())
|
| 260 |
+
task2_values = list(task_counts[2].values())
|
| 261 |
+
|
| 262 |
+
fig_task2 = go.Figure(data=[go.Pie(
|
| 263 |
+
labels=task2_labels,
|
| 264 |
+
values=task2_values,
|
| 265 |
+
textinfo='percent+label',
|
| 266 |
+
textposition='auto',
|
| 267 |
+
marker=dict(colors=colors),
|
| 268 |
+
sort=False
|
| 269 |
+
# pull=[0, 0.2, 0, 0] # for pulling part of pie chart out (depends on position)
|
| 270 |
+
|
| 271 |
+
)])
|
| 272 |
+
|
| 273 |
+
fig_task2.update_layout(
|
| 274 |
+
title='Problem Type: ME',
|
| 275 |
+
title_x=0.5,
|
| 276 |
+
font=dict(
|
| 277 |
+
family="sans-serif",
|
| 278 |
+
size=12,
|
| 279 |
+
color="black"
|
| 280 |
+
),
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
fig_task2.update_layout(
|
| 284 |
+
legend=dict(
|
| 285 |
+
font=dict(
|
| 286 |
+
family="sans-serif",
|
| 287 |
+
size=12,
|
| 288 |
+
color="black"
|
| 289 |
+
),
|
| 290 |
+
)
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
# fig_task2 = Figure()
|
| 295 |
+
# ax2 = fig_task2.add_subplot(1, 1, 1)
|
| 296 |
+
# ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90)
|
| 297 |
+
# ax2.set_title('Ideal Task 2 Distribution')
|
| 298 |
+
|
| 299 |
+
# print(output_summary)
|
| 300 |
+
|
| 301 |
+
progress(0.2, desc="analysis done!! Executing models")
|
| 302 |
+
print("finetuned task: ",finetune_task)
|
| 303 |
+
# subprocess.run([
|
| 304 |
+
# "python", "new_test_saved_finetuned_model.py",
|
| 305 |
+
# "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
|
| 306 |
+
# "-finetune_task", finetune_task,
|
| 307 |
+
# "-test_dataset_path","../../../../selected_rows.txt",
|
| 308 |
+
# # "-test_label_path","../../../../train_label.txt",
|
| 309 |
+
# "-finetuned_bert_classifier_checkpoint",
|
| 310 |
+
# "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
|
| 311 |
+
# "-e",str(1),
|
| 312 |
+
# "-b",str(1000)
|
| 313 |
+
# ])
|
| 314 |
+
progress(0.6,desc="Model execution completed")
|
| 315 |
+
result = {}
|
| 316 |
+
with open("result.txt", 'r') as file:
|
| 317 |
+
for line in file:
|
| 318 |
+
key, value = line.strip().split(': ', 1)
|
| 319 |
+
# print(type(key))
|
| 320 |
+
if key=='epoch':
|
| 321 |
+
result[key]=value
|
| 322 |
+
else:
|
| 323 |
+
result[key]=float(value)
|
| 324 |
+
result["ROC score of HGR"]=high_roc_auc
|
| 325 |
+
result["ROC score of LGR"]=low_roc_auc
|
| 326 |
+
# Create a plot
|
| 327 |
+
with open("roc_data.pkl", "rb") as f:
|
| 328 |
+
fpr, tpr, _ = pickle.load(f)
|
| 329 |
+
# print(fpr,tpr)
|
| 330 |
+
roc_auc = auc(fpr, tpr)
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
# Create a matplotlib figure
|
| 334 |
+
# fig = Figure()
|
| 335 |
+
# ax = fig.add_subplot(1, 1, 1)
|
| 336 |
+
# ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
| 337 |
+
# ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
|
| 338 |
+
# ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
|
| 339 |
+
# ax.legend(loc="lower right")
|
| 340 |
+
# ax.grid()
|
| 341 |
+
|
| 342 |
+
fig = go.Figure()
|
| 343 |
+
# Create and style traces
|
| 344 |
+
fig.add_trace(go.Line(x = list(fpr), y = list(tpr), name=f'ROC curve (area = {roc_auc:.2f})',
|
| 345 |
+
line=dict(color='royalblue', width=3,
|
| 346 |
+
) # dash options include 'dash', 'dot', and 'dashdot'
|
| 347 |
+
))
|
| 348 |
+
fig.add_trace(go.Line(x = [0,1], y = [0,1], showlegend = False,
|
| 349 |
+
line=dict(color='firebrick', width=2,
|
| 350 |
+
dash='dash',) # dash options include 'dash', 'dot', and 'dashdot'
|
| 351 |
+
))
|
| 352 |
+
|
| 353 |
+
# Edit the layout
|
| 354 |
+
fig.update_layout(
|
| 355 |
+
showlegend = True,
|
| 356 |
+
title_x=0.5,
|
| 357 |
+
title=dict(
|
| 358 |
+
text='Receiver Operating Curve (ROC)'
|
| 359 |
+
),
|
| 360 |
+
xaxis=dict(
|
| 361 |
+
title=dict(
|
| 362 |
+
text='False Positive Rate'
|
| 363 |
+
)
|
| 364 |
+
),
|
| 365 |
+
yaxis=dict(
|
| 366 |
+
title=dict(
|
| 367 |
+
text='False Negative Rate'
|
| 368 |
+
)
|
| 369 |
+
),
|
| 370 |
+
font=dict(
|
| 371 |
+
family="sans-serif",
|
| 372 |
+
color="black"
|
| 373 |
+
),
|
| 374 |
+
|
| 375 |
+
)
|
| 376 |
+
fig.update_layout(
|
| 377 |
+
legend=dict(
|
| 378 |
+
x=0.75,
|
| 379 |
+
y=0,
|
| 380 |
+
traceorder="normal",
|
| 381 |
+
font=dict(
|
| 382 |
+
family="sans-serif",
|
| 383 |
+
size=12,
|
| 384 |
+
color="black"
|
| 385 |
+
),
|
| 386 |
+
)
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
# Save plot to a file
|
| 395 |
+
# plot_path = "plot.png"
|
| 396 |
+
# fig.savefig(plot_path)
|
| 397 |
+
# plt.close(fig)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
progress(1.0)
|
| 403 |
+
# Prepare text output
|
| 404 |
+
text_output = f"Model: {model_name}\nResult:\n{result}"
|
| 405 |
+
# Prepare text output with HTML formatting
|
| 406 |
+
text_output = f"""
|
| 407 |
+
---------------------------
|
| 408 |
+
Model: {model_name}
|
| 409 |
+
---------------------------\n
|
| 410 |
+
Time Taken: {result['time_taken_from_start']:.2f} seconds
|
| 411 |
+
Total Schools in test: {len(unique_schools):.4f}
|
| 412 |
+
Total number of instances having Schools with HGR : {len(high_sample):.4f}
|
| 413 |
+
Total number of instances having Schools with LGR: {len(low_sample):.4f}
|
| 414 |
+
|
| 415 |
+
ROC score of HGR: {high_roc_auc:.4f}
|
| 416 |
+
ROC score of LGR: {low_roc_auc:.4f}
|
| 417 |
+
|
| 418 |
+
ROC-AUC for problems of type ER: {opt_task1_roc_auc:.4f}
|
| 419 |
+
ROC-AUC for problems of type ME: {opt_task2_roc_auc:.4f}
|
| 420 |
+
"""
|
| 421 |
+
return text_output,fig,fig_task1,fig_task2
|
| 422 |
+
|
| 423 |
+
# List of models for the dropdown menu
|
| 424 |
+
|
| 425 |
+
# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
|
| 426 |
+
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"]
|
| 427 |
+
content = """
|
| 428 |
+
<h1 style="color: black;">A S T R A</h1>
|
| 429 |
+
<h2 style="color: black;">An AI Model for Analyzing Math Strategies</h2>
|
| 430 |
+
|
| 431 |
+
<h3 style="color: white; text-align: center">
|
| 432 |
+
<a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: gr.themes.colors.red; text-decoration: none;">Link To Paper</a> |
|
| 433 |
+
<a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> |
|
| 434 |
+
<a href="#" style="color: #1E90FF; text-decoration: none;">Project Page</a>
|
| 435 |
+
</h3>
|
| 436 |
+
|
| 437 |
+
<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the
|
| 438 |
+
<a href="https://www.memphis.edu" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and
|
| 439 |
+
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a>
|
| 440 |
+
to utilize AI to improve our understanding of math learning strategies.</p>
|
| 441 |
+
|
| 442 |
+
<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT ) that learns math strategies using data
|
| 443 |
+
collected from hundreds of schools in the U.S. who have used Carnegie Learning’s MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor that is part of a core, blended math curriculum.
|
| 444 |
+
For this demo, we have used data from a specific domain (teaching ratio and proportions) within 7th grade math. The fine-tuning based on the pre-trained model learns to predict which strategies lead to correct vs incorrect solutions.
|
| 445 |
+
</p>
|
| 446 |
+
|
| 447 |
+
<p style="color: white;">In this math domain, students were given word problems related to ratio and proportions. Further, the students
|
| 448 |
+
were given a choice of optional tasks to work on in parallel to the main problem to demonstrate their thinking (metacognition).
|
| 449 |
+
The optional tasks are designed based on solving problems using Equivalent Ratios (ER) and solving using Means and Extremes/cross-multiplication (ME).
|
| 450 |
+
When the equivalent ratios are easy to compute (integral values), ER is much more efficient compared to ME and switching between the tasks appropriately demonstrates cognitive flexibility.
|
| 451 |
+
</p>
|
| 452 |
+
|
| 453 |
+
<p style="color: white;">To use the demo, please follow these steps:</p>
|
| 454 |
+
|
| 455 |
+
<ol style="color: white;">
|
| 456 |
+
<li style="color: white;">Select a fine-tuned model:
|
| 457 |
+
<ul style="color: white;">
|
| 458 |
+
<li style="color: white;">ASTRA-FT-HGR: Fine-tuned with a small sample of data from schools that have a high graduation rate.</li>
|
| 459 |
+
<li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>
|
| 460 |
+
</ul>
|
| 461 |
+
</li>
|
| 462 |
+
<li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time). Note that the selected percentage is applied to both High Graduation Rate (HGR) schools and Low Graduation Rate (LGR schools).
|
| 463 |
+
</li>
|
| 464 |
+
<li style="color: white;">The results from the fine-tuned model are displayed in the dashboard:
|
| 465 |
+
<ul>
|
| 466 |
+
<li style="color: white;">The model accuracy is computed using the ROC-AUC metric.
|
| 467 |
+
</li>
|
| 468 |
+
<li style="color: white;">The results are shown for HGR, LGR schools and for different problem types (ER/ME).
|
| 469 |
+
</li>
|
| 470 |
+
<li style="color: white;">The distribution over how students utilized the optional tasks (whether they utilized ER/ME, used both of them or none of them) is shown for each problem type.
|
| 471 |
+
</li>
|
| 472 |
+
</ul>
|
| 473 |
+
</li>
|
| 474 |
+
</ol>
|
| 475 |
+
"""
|
| 476 |
+
# CSS styling for white text
|
| 477 |
+
# Create the Gradio interface
|
| 478 |
+
available_themes = {
|
| 479 |
+
"default": gr.themes.Default(),
|
| 480 |
+
"soft": gr.themes.Soft(),
|
| 481 |
+
"monochrome": gr.themes.Monochrome(),
|
| 482 |
+
"glass": gr.themes.Glass(),
|
| 483 |
+
"base": gr.themes.Base(),
|
| 484 |
+
}
|
| 485 |
+
|
| 486 |
+
# Comprehensive CSS for all HTML elements
|
| 487 |
+
custom_css = '''
|
| 488 |
+
/* Import Fira Sans font */
|
| 489 |
+
@import url('https://fonts.googleapis.com/css2?family=Fira+Sans:wght@400;500;600;700&family=Inter:wght@400;500;600;700&display=swap');
|
| 490 |
+
@import url('https://fonts.googleapis.com/css2?family=Libre+Caslon+Text:ital,wght@0,400;0,700;1,400&family=Spectral+SC:wght@600&display=swap');
|
| 491 |
+
/* Container modifications for centering */
|
| 492 |
+
.gradio-container {
|
| 493 |
+
color: var(--block-label-text-color) !important;
|
| 494 |
+
max-width: 1000px !important;
|
| 495 |
+
margin: 0 auto !important;
|
| 496 |
+
padding: 2rem !important;
|
| 497 |
+
font-family: Arial, sans-serif !important;
|
| 498 |
+
}
|
| 499 |
+
|
| 500 |
+
/* Main title (ASTRA) */
|
| 501 |
+
#title {
|
| 502 |
+
text-align: center !important;
|
| 503 |
+
margin: 1rem auto !important; /* Reduced margin */
|
| 504 |
+
font-size: 2.5em !important;
|
| 505 |
+
font-weight: 600 !important;
|
| 506 |
+
font-family: "Spectral SC", 'Fira Sans', sans-serif !important;
|
| 507 |
+
padding-bottom: 0 !important; /* Remove bottom padding */
|
| 508 |
+
}
|
| 509 |
+
|
| 510 |
+
/* Subtitle (An AI Model...) */
|
| 511 |
+
h1 {
|
| 512 |
+
text-align: center !important;
|
| 513 |
+
font-size: 30pt !important;
|
| 514 |
+
font-weight: 600 !important;
|
| 515 |
+
font-family: "Spectral SC", 'Fira Sans', sans-serif !important;
|
| 516 |
+
margin-top: 0.5em !important; /* Reduced top margin */
|
| 517 |
+
margin-bottom: 0.3em !important;
|
| 518 |
+
}
|
| 519 |
+
|
| 520 |
+
h2 {
|
| 521 |
+
text-align: center !important;
|
| 522 |
+
font-size: 22pt !important;
|
| 523 |
+
font-weight: 600 !important;
|
| 524 |
+
font-family: "Spectral SC",'Fira Sans', sans-serif !important;
|
| 525 |
+
margin-top: 0.2em !important; /* Reduced top margin */
|
| 526 |
+
margin-bottom: 0.3em !important;
|
| 527 |
+
}
|
| 528 |
+
|
| 529 |
+
/* Links container styling */
|
| 530 |
+
.links-container {
|
| 531 |
+
text-align: center !important;
|
| 532 |
+
margin: 1em auto !important;
|
| 533 |
+
font-family: 'Inter' ,'Fira Sans', sans-serif !important;
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
/* Links */
|
| 537 |
+
a {
|
| 538 |
+
color: #2563eb !important;
|
| 539 |
+
text-decoration: none !important;
|
| 540 |
+
font-family:'Inter' , 'Fira Sans', sans-serif !important;
|
| 541 |
+
}
|
| 542 |
+
|
| 543 |
+
a:hover {
|
| 544 |
+
text-decoration: underline !important;
|
| 545 |
+
opacity: 0.8;
|
| 546 |
+
}
|
| 547 |
+
|
| 548 |
+
/* Regular text */
|
| 549 |
+
p, li, .description, .markdown-text {
|
| 550 |
+
font-family: 'Inter', Arial, sans-serif !important;
|
| 551 |
+
color: black !important;
|
| 552 |
+
font-size: 11pt;
|
| 553 |
+
line-height: 1.6;
|
| 554 |
+
font-weight: 500 !important;
|
| 555 |
+
color: var(--block-label-text-color) !important;
|
| 556 |
+
}
|
| 557 |
+
|
| 558 |
+
/* Other headings */
|
| 559 |
+
h3, h4, h5 {
|
| 560 |
+
font-family: 'Fira Sans', sans-serif !important;
|
| 561 |
+
color: var(--block-label-text-color) !important;
|
| 562 |
+
margin-top: 1.5em;
|
| 563 |
+
margin-bottom: 0.75em;
|
| 564 |
+
}
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
h3 { font-size: 1.5em; font-weight: 600; }
|
| 568 |
+
h4 { font-size: 1.25em; font-weight: 500; }
|
| 569 |
+
h5 { font-size: 1.1em; font-weight: 500; }
|
| 570 |
+
|
| 571 |
+
/* Form elements */
|
| 572 |
+
.select-wrap select, .wrap select,
|
| 573 |
+
input, textarea {
|
| 574 |
+
font-family: 'Inter' ,Arial, sans-serif !important;
|
| 575 |
+
color: var(--block-label-text-color) !important;
|
| 576 |
+
}
|
| 577 |
+
|
| 578 |
+
/* Lists */
|
| 579 |
+
ul, ol {
|
| 580 |
+
margin-left: 0 !important;
|
| 581 |
+
margin-bottom: 1.25em;
|
| 582 |
+
padding-left: 2em;
|
| 583 |
+
}
|
| 584 |
+
|
| 585 |
+
li {
|
| 586 |
+
margin-bottom: 0.75em;
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
/* Form container */
|
| 590 |
+
.form-container {
|
| 591 |
+
max-width: 1000px !important;
|
| 592 |
+
margin: 0 auto !important;
|
| 593 |
+
padding: 1rem !important;
|
| 594 |
+
}
|
| 595 |
+
|
| 596 |
+
/* Dashboard */
|
| 597 |
+
.dashboard {
|
| 598 |
+
margin-top: 2rem !important;
|
| 599 |
+
padding: 1rem !important;
|
| 600 |
+
border-radius: 8px !important;
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
/* Slider styling */
|
| 604 |
+
.gradio-slider-row {
|
| 605 |
+
display: flex;
|
| 606 |
+
align-items: center;
|
| 607 |
+
justify-content: space-between;
|
| 608 |
+
margin: 1.5em 0;
|
| 609 |
+
max-width: 100% !important;
|
| 610 |
+
}
|
| 611 |
+
|
| 612 |
+
.gradio-slider {
|
| 613 |
+
flex-grow: 1;
|
| 614 |
+
margin-right: 15px;
|
| 615 |
+
}
|
| 616 |
+
|
| 617 |
+
.slider-percentage {
|
| 618 |
+
font-family: 'Inter', Arial, sans-serif !important;
|
| 619 |
+
flex-shrink: 0;
|
| 620 |
+
min-width: 60px;
|
| 621 |
+
font-size: 1em;
|
| 622 |
+
font-weight: bold;
|
| 623 |
+
text-align: center;
|
| 624 |
+
background-color: #f0f8ff;
|
| 625 |
+
border: 1px solid #004080;
|
| 626 |
+
border-radius: 5px;
|
| 627 |
+
padding: 5px 10px;
|
| 628 |
+
}
|
| 629 |
+
|
| 630 |
+
.progress-bar-wrap.progress-bar-wrap.progress-bar-wrap
|
| 631 |
+
{
|
| 632 |
+
border-radius: var(--input-radius);
|
| 633 |
+
height: 1.25rem;
|
| 634 |
+
margin-top: 1rem;
|
| 635 |
+
overflow: hidden;
|
| 636 |
+
width: 70%;
|
| 637 |
+
font-family: 'Inter', Arial, sans-serif !important;
|
| 638 |
+
}
|
| 639 |
+
|
| 640 |
+
/* Add these new styles after your existing CSS */
|
| 641 |
+
|
| 642 |
+
/* Card-like appearance for the dashboard */
|
| 643 |
+
.dashboard {
|
| 644 |
+
background: #ffffff !important;
|
| 645 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
|
| 646 |
+
border-radius: 12px !important;
|
| 647 |
+
padding: 2rem !important;
|
| 648 |
+
margin-top: 2.5rem !important;
|
| 649 |
+
}
|
| 650 |
+
|
| 651 |
+
/* Enhance ROC graph container */
|
| 652 |
+
#roc {
|
| 653 |
+
background: #ffffff !important;
|
| 654 |
+
padding: 1.5rem !important;
|
| 655 |
+
border-radius: 8px !important;
|
| 656 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
| 657 |
+
margin: 1.5rem 0 !important;
|
| 658 |
+
}
|
| 659 |
+
|
| 660 |
+
/* Style the dropdown select */
|
| 661 |
+
select {
|
| 662 |
+
background-color: #ffffff !important;
|
| 663 |
+
border: 1px solid #e2e8f0 !important;
|
| 664 |
+
border-radius: 8px !important;
|
| 665 |
+
padding: 0.5rem 1rem !important;
|
| 666 |
+
transition: all 0.2s ease-in-out !important;
|
| 667 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
| 668 |
+
}
|
| 669 |
+
|
| 670 |
+
select:hover {
|
| 671 |
+
border-color: #cbd5e1 !important;
|
| 672 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
|
| 673 |
+
}
|
| 674 |
+
|
| 675 |
+
/* Enhance slider appearance */
|
| 676 |
+
.progress-bar-wrap {
|
| 677 |
+
background: #f8fafc !important;
|
| 678 |
+
border: 1px solid #e2e8f0 !important;
|
| 679 |
+
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
| 680 |
+
}
|
| 681 |
+
|
| 682 |
+
/* Style metrics in dashboard */
|
| 683 |
+
.dashboard p {
|
| 684 |
+
padding: 0.5rem 0 !important;
|
| 685 |
+
border-bottom: 1px solid #f1f5f9 !important;
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
/* Add spacing between sections */
|
| 689 |
+
.dashboard > div {
|
| 690 |
+
margin-bottom: 1.5rem !important;
|
| 691 |
+
}
|
| 692 |
+
|
| 693 |
+
/* Style the ROC curve title */
|
| 694 |
+
.dashboard h4 {
|
| 695 |
+
color: #1e293b !important;
|
| 696 |
+
font-weight: 600 !important;
|
| 697 |
+
margin-bottom: 1rem !important;
|
| 698 |
+
padding-bottom: 0.5rem !important;
|
| 699 |
+
border-bottom: 2px solid #e2e8f0 !important;
|
| 700 |
+
}
|
| 701 |
+
|
| 702 |
+
/* Enhance link appearances */
|
| 703 |
+
a {
|
| 704 |
+
position: relative !important;
|
| 705 |
+
padding-bottom: 2px !important;
|
| 706 |
+
transition: all 0.2s ease-in-out !important;
|
| 707 |
+
}
|
| 708 |
+
|
| 709 |
+
a:after {
|
| 710 |
+
content: '' !important;
|
| 711 |
+
position: absolute !important;
|
| 712 |
+
width: 0 !important;
|
| 713 |
+
height: 1px !important;
|
| 714 |
+
bottom: 0 !important;
|
| 715 |
+
left: 0 !important;
|
| 716 |
+
background-color: #2563eb !important;
|
| 717 |
+
transition: width 0.3s ease-in-out !important;
|
| 718 |
+
}
|
| 719 |
+
|
| 720 |
+
a:hover:after {
|
| 721 |
+
width: 100% !important;
|
| 722 |
+
}
|
| 723 |
+
|
| 724 |
+
/* Add subtle dividers between sections */
|
| 725 |
+
.form-container > div {
|
| 726 |
+
padding-bottom: 1.5rem !important;
|
| 727 |
+
margin-bottom: 1.5rem !important;
|
| 728 |
+
border-bottom: 1px solid #f1f5f9 !important;
|
| 729 |
+
}
|
| 730 |
+
|
| 731 |
+
/* Style model selection section */
|
| 732 |
+
.select-wrap {
|
| 733 |
+
background: #ffffff !important;
|
| 734 |
+
padding: 1.5rem !important;
|
| 735 |
+
border-radius: 8px !important;
|
| 736 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
| 737 |
+
margin-bottom: 2rem !important;
|
| 738 |
+
}
|
| 739 |
+
|
| 740 |
+
/* Style the metrics display */
|
| 741 |
+
.dashboard span {
|
| 742 |
+
font-family: 'Inter', sans-serif !important;
|
| 743 |
+
font-weight: 500 !important;
|
| 744 |
+
color: #334155 !important;
|
| 745 |
+
}
|
| 746 |
+
|
| 747 |
+
/* Add subtle animation to interactive elements */
|
| 748 |
+
button, select, .slider-percentage {
|
| 749 |
+
transition: all 0.2s ease-in-out !important;
|
| 750 |
+
}
|
| 751 |
+
|
| 752 |
+
/* Style the ROC curve container */
|
| 753 |
+
.plot-container {
|
| 754 |
+
background: #ffffff !important;
|
| 755 |
+
border-radius: 8px !important;
|
| 756 |
+
padding: 1rem !important;
|
| 757 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
| 758 |
+
}
|
| 759 |
+
|
| 760 |
+
/* Add container styles for opt1 and opt2 sections */
|
| 761 |
+
#opt1, #opt2 {
|
| 762 |
+
background: #ffffff !important;
|
| 763 |
+
border-radius: 8px !important;
|
| 764 |
+
padding: 1.5rem !important;
|
| 765 |
+
margin-top: 1.5rem !important;
|
| 766 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
| 767 |
+
}
|
| 768 |
+
|
| 769 |
+
/* Style the distribution titles */
|
| 770 |
+
.distribution-title {
|
| 771 |
+
font-family: 'Inter', sans-serif !important;
|
| 772 |
+
font-weight: 600 !important;
|
| 773 |
+
color: #1e293b !important;
|
| 774 |
+
margin-bottom: 1rem !important;
|
| 775 |
+
text-align: center !important;
|
| 776 |
+
}
|
| 777 |
+
|
| 778 |
+
'''
|
| 779 |
+
|
| 780 |
+
with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
| 781 |
+
|
| 782 |
+
# gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
|
| 783 |
+
gr.Markdown(content)
|
| 784 |
+
|
| 785 |
+
with gr.Row():
|
| 786 |
+
# file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
|
| 787 |
+
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
|
| 788 |
+
|
| 789 |
+
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
|
| 790 |
+
model_dropdown = gr.Dropdown(
|
| 791 |
+
choices=models,
|
| 792 |
+
label="Select Fine-tuned Model",
|
| 793 |
+
elem_classes="dropdown-menu"
|
| 794 |
+
)
|
| 795 |
+
increment_slider = gr.Slider(
|
| 796 |
+
minimum=1,
|
| 797 |
+
maximum=100,
|
| 798 |
+
step=1,
|
| 799 |
+
label="Schools Percentage",
|
| 800 |
+
value=1,
|
| 801 |
+
elem_id="increment-slider",
|
| 802 |
+
elem_classes="gradio-slider"
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
with gr.Row():
|
| 806 |
+
btn = gr.Button("Submit")
|
| 807 |
+
|
| 808 |
+
gr.Markdown("<p class='description'>Dashboard</p>")
|
| 809 |
+
|
| 810 |
+
with gr.Row():
|
| 811 |
+
output_text = gr.Textbox(label="")
|
| 812 |
+
# output_image = gr.Image(label="ROC")
|
| 813 |
+
with gr.Row():
|
| 814 |
+
plot_output = gr.Plot(label="ROC")
|
| 815 |
+
|
| 816 |
+
with gr.Row():
|
| 817 |
+
opt1_pie = gr.Plot(label="ER")
|
| 818 |
+
opt2_pie = gr.Plot(label="ME")
|
| 819 |
+
# output_summary = gr.Textbox(label="Summary")
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
btn.click(
|
| 824 |
+
fn=process_file,
|
| 825 |
+
inputs=[model_dropdown,increment_slider],
|
| 826 |
+
outputs=[output_text,plot_output,opt1_pie,opt2_pie]
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
# Launch the app
|
| 831 |
demo.launch()
|