File size: 29,424 Bytes
38b2ece 8c4798d f40b063 38b2ece f0b9a08 38b2ece f40b063 e841bb9 f40b063 e841bb9 f40b063 f0b9a08 f40b063 38b2ece 5ceab5f 8c4798d 5ceab5f 8c4798d 5ceab5f 8c4798d 38b2ece 207b913 38b2ece 207b913 38b2ece 8c4798d 207b913 8c4798d 38b2ece 8c4798d 38b2ece 207b913 38b2ece 207b913 8c4798d 207b913 8c4798d 38b2ece 8c4798d 38b2ece f40b063 38b2ece 207b913 38b2ece 207b913 38b2ece 8c4798d e841bb9 8c4798d e841bb9 f40b063 e841bb9 f40b063 38b2ece f40b063 e841bb9 f40b063 e841bb9 38b2ece e841bb9 38b2ece 8c4798d 38b2ece 207b913 8c4798d 38b2ece 207b913 8c4798d 38b2ece f40b063 e841bb9 f40b063 e841bb9 f40b063 e841bb9 f40b063 e841bb9 f40b063 8c4798d e841bb9 f40b063 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece f0b9a08 38b2ece 8c4798d 38b2ece e841bb9 38b2ece e841bb9 38b2ece e841bb9 38b2ece 8c4798d e841bb9 38b2ece 49c9e15 38b2ece 49c9e15 8c4798d 38b2ece 49c9e15 8c4798d 49c9e15 8c4798d 49c9e15 8c4798d 49c9e15 8c4798d 49c9e15 207b913 38b2ece 8c4798d 38b2ece 49c9e15 f0b9a08 8c4798d 49c9e15 8c4798d f0b9a08 38b2ece 8c4798d 765ede7 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d e841bb9 8c4798d e841bb9 f40b063 8c4798d e841bb9 f40b063 8c4798d 49c9e15 8c4798d f40b063 8c4798d e841bb9 38b2ece 8c4798d f40b063 765ede7 38b2ece e841bb9 49c9e15 38b2ece 49c9e15 8c4798d 49c9e15 38b2ece 207b913 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
import gradio as gr
import base64
import io
import os
from openai import OpenAI
import PyPDF2
from PIL import Image
import speech_recognition as sr
import tempfile
import cv2
import numpy as np
from typing import List, Tuple, Optional
import json
import pydub
from pydub import AudioSegment
from transformers import pipeline
import torch
class MultimodalChatbot:
def __init__(self, api_key: str):
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
self.model = "google/gemma-2-9b-it:free"
self.conversation_history = []
# Initialize the pipeline for image-text-to-text processing
try:
self.pipe = pipeline(
"image-captioning",
model="Salesforce/blip-image-captioning-base",
device="cpu", # Optimized for CPU in HF Spaces
torch_dtype=torch.float32, # Use float32 for CPU compatibility
)
print("Image captioning pipeline initialized successfully")
except Exception as e:
print(f"Error initializing image captioning pipeline: {e}")
self.pipe = None
def encode_image_to_base64(self, image) -> str:
"""Convert PIL Image or file path to base64 string"""
try:
if isinstance(image, str):
with open(image, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
elif isinstance(image, Image.Image):
buffered = io.BytesIO()
if image.mode == 'RGBA':
image = image.convert('RGB')
image.save(buffered, format="JPEG", quality=85)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
else:
raise ValueError("Invalid image input")
except Exception as e:
return f"Error encoding image: {str(e)}"
def extract_pdf_text(self, pdf_file) -> str:
"""Extract text from PDF file"""
try:
if isinstance(pdf_file, str):
pdf_path = pdf_file
elif hasattr(pdf_file, 'name'):
pdf_path = pdf_file.name
else:
raise ValueError("Invalid PDF file input")
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
if page_text and page_text.strip():
text += f"Page {page_num + 1}:\n{page_text}\n\n"
return text.strip() if text.strip() else "No text could be extracted from this PDF."
except Exception as e:
return f"Error extracting PDF: {str(e)}"
def convert_audio_to_wav(self, audio_file) -> str:
"""Convert audio file to WAV format for speech recognition"""
try:
if isinstance(audio_file, str):
audio_path = audio_file
elif hasattr(audio_file, 'name'):
audio_path = audio_file.name
else:
raise ValueError("Invalid audio file input")
file_ext = os.path.splitext(audio_path)[1].lower()
if file_ext == '.wav':
return audio_path
audio = AudioSegment.from_file(audio_path)
wav_path = tempfile.mktemp(suffix='.wav')
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
return wav_path
except Exception as e:
return f"Error converting audio: {str(e)}"
def transcribe_audio(self, audio_file) -> str:
"""Transcribe audio file to text"""
try:
recognizer = sr.Recognizer()
wav_path = self.convert_audio_to_wav(audio_file)
with sr.AudioFile(wav_path) as source:
recognizer.adjust_for_ambient_noise(source, duration=0.2)
audio_data = recognizer.record(source)
try:
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return "Could not understand the audio. Please try with clearer audio."
except sr.RequestError as e:
try:
text = recognizer.recognize_sphinx(audio_data)
return text
except:
return f"Speech recognition service error: {str(e)}"
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def extract_video_frame(self, video_file, frame_number=None):
"""Extract a frame from the video"""
try:
if isinstance(video_file, str):
video_path = video_file
elif hasattr(video_file, 'name'):
video_path = video_file.name
else:
raise ValueError("Invalid video file input")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video file"
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames <= 0:
cap.release()
return None, "Video has no frames"
if frame_number is None:
frame_number = total_frames // 2 # Extract middle frame
if frame_number >= total_frames:
frame_number = total_frames - 1
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
cap.release()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return Image.fromarray(frame), f"Extracted frame {frame_number} of {total_frames}"
else:
return None, "Failed to extract frame"
except Exception as e:
return None, f"Error extracting video frame: {str(e)}"
def create_multimodal_message(self,
text_input: str = "",
pdf_file=None,
audio_file=None,
image_file=None,
video_file=None) -> dict:
"""Create a multimodal message for the API"""
content_parts = []
processing_info = []
if text_input:
content_parts.append({"type": "text", "text": text_input})
if pdf_file is not None:
pdf_text = self.extract_pdf_text(pdf_file)
content_parts.append({"type": "text", "text": f"PDF Content:\n{pdf_text}"})
processing_info.append("π PDF processed")
if audio_file is not None:
audio_text = self.transcribe_audio(audio_file)
content_parts.append({"type": "text", "text": f"Audio Transcription:\n{audio_text}"})
processing_info.append("π€ Audio transcribed")
if image_file is not None and self.pipe is not None:
try:
if isinstance(image_file, str):
image = Image.open(image_file)
else:
image = image_file
# Use BLIP model for image captioning
output = self.pipe(image)
description = output[0]['generated_caption']
if text_input:
content_parts.append({"type": "text", "text": f"Image analysis (based on '{text_input}'): {description}"})
else:
content_parts.append({"type": "text", "text": f"Image analysis: {description}"})
processing_info.append("πΌοΈ Image analyzed")
except Exception as e:
content_parts.append({"type": "text", "text": f"Error analyzing image: {str(e)}"})
processing_info.append("πΌοΈ Image analysis failed")
elif image_file is not None:
content_parts.append({"type": "text", "text": "Image uploaded. Analysis failed due to model initialization error."})
processing_info.append("πΌοΈ Image received (analysis failed)")
if video_file is not None and self.pipe is not None:
frame, frame_info = self.extract_video_frame(video_file)
if frame:
try:
output = self.pipe(frame)
description = output[0]['generated_caption']
if text_input:
content_parts.append({"type": "text", "text": f"Video frame analysis (based on '{text_input}'): {description}. Frame info: {frame_info}. Please describe the video for further assistance."})
else:
content_parts.append({"type": "text", "text": f"Video frame analysis: {description}. Frame info: {frame_info}. Please describe the video for further assistance."})
processing_info.append("π₯ Video frame analyzed")
except Exception as e:
content_parts.append({"type": "text", "text": f"Error analyzing video frame: {str(e)}. Frame info: {frame_info}"})
processing_info.append("π₯ Video frame analysis failed")
else:
content_parts.append({"type": "text", "text": f"Could not extract frame from video: {frame_info}. Please describe the video."})
processing_info.append("π₯ Video processing failed")
elif video_file is not None:
content_parts.append({"type": "text", "text": "Video uploaded. Analysis failed due to model initialization error."})
processing_info.append("π₯ Video received (analysis failed)")
return {"role": "user", "content": content_parts}, processing_info
def chat(self,
text_input: str = "",
pdf_file=None,
audio_file=None,
image_file=None,
video_file=None,
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
"""Main chat function"""
if history is None:
history = []
try:
user_message_parts = []
if text_input:
user_message_parts.append(f"Text: {text_input}")
if pdf_file:
user_message_parts.append("π PDF uploaded")
if audio_file:
user_message_parts.append("π€ Audio uploaded")
if image_file:
user_message_parts.append("πΌοΈ Image uploaded")
if video_file:
user_message_parts.append("π₯ Video uploaded")
user_display = " | ".join(user_message_parts)
user_message, processing_info = self.create_multimodal_message(
text_input, pdf_file, audio_file, image_file, video_file
)
if processing_info:
user_display += f"\n{' | '.join(processing_info)}"
messages = [user_message]
completion = self.client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://multimodal-chatbot.local",
"X-Title": "Multimodal Chatbot",
},
model=self.model,
messages=messages,
max_tokens=2048,
temperature=0.7
)
bot_response = completion.choices[0].message.content
history.append((user_display, bot_response))
return history, ""
except Exception as e:
error_msg = f"Error: {str(e)}"
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
return history, ""
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="Multimodal Chatbot with BLIP and Gemma", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ Multimodal Chatbot with BLIP and Gemma
This chatbot can process multiple types of input:
- **Text**: Regular text messages using Gemma
- **PDF**: Extract and analyze document content
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
- **Images**: Upload images for analysis using BLIP
- **Video**: Upload videos for basic frame analysis using BLIP
**Setup**: Enter your OpenRouter API key below to get started
""")
with gr.Row():
with gr.Column():
api_key_input = gr.Textbox(
label="π OpenRouter API Key",
placeholder="Enter your OpenRouter API key here...",
type="password",
info="Your API key is not stored and only used for this session"
)
api_status = gr.Textbox(
label="Connection Status",
value="β API Key not provided",
interactive=False
)
with gr.Tabs():
with gr.TabItem("π¬ Text Chat"):
with gr.Row():
with gr.Column(scale=1):
text_input = gr.Textbox(
label="π¬ Text Input",
placeholder="Type your message here...",
lines=5
)
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
text_chatbot = gr.Chatbot(
label="Text Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
with gr.TabItem("π PDF Chat"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(
label="π PDF Upload",
file_types=[".pdf"],
type="filepath"
)
pdf_text_input = gr.Textbox(
label="π¬ Question about PDF",
placeholder="Ask something about the PDF...",
lines=3
)
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
pdf_chatbot = gr.Chatbot(
label="PDF Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
with gr.TabItem("π€ Audio Chat"):
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.File(
label="π€ Audio Upload",
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
type="filepath"
)
audio_text_input = gr.Textbox(
label="π¬ Question about Audio",
placeholder="Ask something about the audio...",
lines=3
)
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
audio_chatbot = gr.Chatbot(
label="Audio Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
with gr.TabItem("πΌοΈ Image Chat"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="πΌοΈ Image Upload",
type="pil"
)
image_text_input = gr.Textbox(
label="π¬ Question about Image",
placeholder="Ask something about the image...",
lines=3
)
image_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
image_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
image_chatbot = gr.Chatbot(
label="Image Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
with gr.TabItem("π₯ Video Chat"):
with gr.Row():
with gr.Column(scale=1):
video_input = gr.File(
label="π₯ Video Upload",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
video_text_input = gr.Textbox(
label="π¬ Question about Video",
placeholder="Ask something about the video...",
lines=3
)
video_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
video_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
video_chatbot = gr.Chatbot(
label="Video Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
with gr.TabItem("π Combined Chat"):
with gr.Row():
with gr.Column(scale=1):
combined_text_input = gr.Textbox(
label="π¬ Text Input",
placeholder="Type your message here...",
lines=3
)
combined_pdf_input = gr.File(
label="π PDF Upload",
file_types=[".pdf"],
type="filepath"
)
combined_audio_input = gr.File(
label="π€ Audio Upload",
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
type="filepath"
)
combined_image_input = gr.Image(
label="πΌοΈ Image Upload",
type="pil"
)
combined_video_input = gr.File(
label="π₯ Video Upload",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=2):
combined_chatbot = gr.Chatbot(
label="Combined Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
def validate_api_key(api_key):
if not api_key or len(api_key.strip()) == 0:
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(6)]
try:
test_client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key.strip(),
)
return "β
API Key validated successfully", *[gr.update(interactive=True) for _ in range(6)]
except Exception as e:
return f"β API Key validation failed: {str(e)}", *[gr.update(interactive=False) for _ in range(6)]
def process_text_input(api_key, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, history=history)
def process_pdf_input(api_key, pdf, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
def process_audio_input(api_key, audio, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, audio_file=audio, history=history)
def process_image_input(api_key, image, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, image_file=image, history=history)
def process_video_input(api_key, video, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, video_file=video, history=history)
def process_combined_input(api_key, text, pdf, audio, image, video, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, pdf_file=pdf, audio_file=audio, image_file=image, video_file=video, history=history)
def clear_chat():
return [], ""
def clear_all_inputs():
return [], "", None, None, None, None
api_key_input.change(
validate_api_key,
inputs=[api_key_input],
outputs=[api_status, text_submit_btn, pdf_submit_btn, audio_submit_btn,
image_submit_btn, video_submit_btn, combined_submit_btn]
)
text_submit_btn.click(
process_text_input,
inputs=[api_key_input, text_input, text_chatbot],
outputs=[text_chatbot, text_input]
)
text_input.submit(
process_text_input,
inputs=[api_key_input, text_input, text_chatbot],
outputs=[text_chatbot, text_input]
)
text_clear_btn.click(clear_chat, outputs=[text_chatbot, text_input])
pdf_submit_btn.click(
process_pdf_input,
inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot],
outputs=[pdf_chatbot, pdf_text_input]
)
pdf_clear_btn.click(lambda: ([], "", None), outputs=[pdf_chatbot, pdf_text_input, pdf_input])
audio_submit_btn.click(
process_audio_input,
inputs=[api_key_input, audio_input, audio_text_input, audio_chatbot],
outputs=[audio_chatbot, audio_text_input]
)
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
image_submit_btn.click(
process_image_input,
inputs=[api_key_input, image_input, image_text_input, image_chatbot],
outputs=[image_chatbot, image_text_input]
)
image_clear_btn.click(lambda: ([], "", None), outputs=[image_chatbot, image_text_input, image_input])
video_submit_btn.click(
process_video_input,
inputs=[api_key_input, video_input, video_text_input, video_chatbot],
outputs=[video_chatbot, video_text_input]
)
video_clear_btn.click(lambda: ([], "", None), outputs=[video_chatbot, video_text_input, video_input])
combined_submit_btn.click(
process_combined_input,
inputs=[api_key_input, combined_text_input, combined_pdf_input,
combined_audio_input, combined_image_input, combined_video_input, combined_chatbot],
outputs=[combined_chatbot, combined_text_input]
)
combined_clear_btn.click(clear_all_inputs,
outputs=[combined_chatbot, combined_text_input, combined_pdf_input,
combined_audio_input, combined_image_input, combined_video_input])
gr.Markdown("""
### π― How to Use Each Tab:
**π¬ Text Chat**: Simple text conversations with the AI using Gemma
**π PDF Chat**: Upload a PDF and ask questions about its content
**π€ Audio Chat**: Upload audio files for transcription and analysis
- Supports: WAV, MP3, M4A, FLAC, OGG formats
- Best results with clear speech and minimal background noise
**πΌοΈ Image Chat**: Upload images for analysis using BLIP
- Provide a text prompt to guide the analysis (e.g., "What is in this image?")
**π₯ Video Chat**: Upload videos for basic frame analysis using BLIP
- Analysis is based on a single frame; provide a text description for full video context
**π Combined Chat**: Use multiple input types together for comprehensive analysis
### π Getting an API Key:
1. Go to [OpenRouter.ai](https://openrouter.ai)
2. Sign up for an account
3. Navigate to the API Keys section
4. Create a new API key
5. Copy and paste it in the field above
### β οΈ Current Limitations:
- Image and video analysis may be slow on CPU in Hugging Face Spaces
- Video analysis is limited to a single frame due to CPU constraints
- Large files may take longer to process
- BLIP model may provide basic captions; detailed video descriptions require additional user input
""")
return demo
if __name__ == "__main__":
required_packages = [
"gradio",
"openai",
"PyPDF2",
"Pillow",
"SpeechRecognition",
"opencv-python",
"numpy",
"pydub",
"transformers",
"torch"
]
print("π Multimodal Chatbot with BLIP and Gemma")
print("=" * 50)
print("Required packages:", ", ".join(required_packages))
print("\nπ¦ To install: pip install " + " ".join(required_packages))
print("\nπ€ For audio processing, you may also need:")
print(" - ffmpeg (for audio conversion)")
print(" - sudo apt-get install espeak espeak-data libespeak1 libespeak-dev (for offline speech recognition)")
print("\nπ Get your API key from: https://openrouter.ai")
print("π‘ Enter your API key in the web interface when it loads")
demo = create_interface()
demo.launch(share=True) |