Update app.py
Browse files
app.py
CHANGED
|
@@ -27,13 +27,10 @@ class MultimodalChatbot:
|
|
| 27 |
"""Convert PIL Image to base64 string"""
|
| 28 |
try:
|
| 29 |
if isinstance(image, str):
|
| 30 |
-
# If it's a file path
|
| 31 |
with open(image, "rb") as img_file:
|
| 32 |
return base64.b64encode(img_file.read()).decode('utf-8')
|
| 33 |
else:
|
| 34 |
-
# If it's a PIL Image
|
| 35 |
buffered = io.BytesIO()
|
| 36 |
-
# Convert to RGB if it's RGBA
|
| 37 |
if image.mode == 'RGBA':
|
| 38 |
image = image.convert('RGB')
|
| 39 |
image.save(buffered, format="JPEG", quality=85)
|
|
@@ -44,18 +41,19 @@ class MultimodalChatbot:
|
|
| 44 |
def extract_pdf_text(self, pdf_file) -> str:
|
| 45 |
"""Extract text from PDF file"""
|
| 46 |
try:
|
| 47 |
-
if
|
| 48 |
-
|
|
|
|
| 49 |
pdf_path = pdf_file.name
|
| 50 |
else:
|
| 51 |
-
|
| 52 |
|
| 53 |
text = ""
|
| 54 |
with open(pdf_path, 'rb') as file:
|
| 55 |
pdf_reader = PyPDF2.PdfReader(file)
|
| 56 |
for page_num, page in enumerate(pdf_reader.pages):
|
| 57 |
page_text = page.extract_text()
|
| 58 |
-
if page_text.strip():
|
| 59 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
| 60 |
return text.strip() if text.strip() else "No text could be extracted from this PDF."
|
| 61 |
except Exception as e:
|
|
@@ -64,65 +62,56 @@ class MultimodalChatbot:
|
|
| 64 |
def convert_audio_to_wav(self, audio_file) -> str:
|
| 65 |
"""Convert audio file to WAV format for speech recognition"""
|
| 66 |
try:
|
| 67 |
-
if
|
|
|
|
|
|
|
| 68 |
audio_path = audio_file.name
|
| 69 |
else:
|
| 70 |
-
|
| 71 |
|
| 72 |
-
# Get file extension
|
| 73 |
file_ext = os.path.splitext(audio_path)[1].lower()
|
| 74 |
-
|
| 75 |
-
# If already WAV, return as is
|
| 76 |
if file_ext == '.wav':
|
| 77 |
return audio_path
|
| 78 |
|
| 79 |
-
# Convert to WAV using pydub
|
| 80 |
audio = AudioSegment.from_file(audio_path)
|
| 81 |
-
# Export as WAV with proper settings for speech recognition
|
| 82 |
wav_path = tempfile.mktemp(suffix='.wav')
|
| 83 |
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
|
| 84 |
return wav_path
|
| 85 |
-
|
| 86 |
except Exception as e:
|
| 87 |
-
|
| 88 |
|
| 89 |
def transcribe_audio(self, audio_file) -> str:
|
| 90 |
"""Transcribe audio file to text"""
|
| 91 |
try:
|
| 92 |
recognizer = sr.Recognizer()
|
| 93 |
-
|
| 94 |
-
# Convert audio to WAV format
|
| 95 |
wav_path = self.convert_audio_to_wav(audio_file)
|
| 96 |
|
| 97 |
with sr.AudioFile(wav_path) as source:
|
| 98 |
-
# Adjust for ambient noise
|
| 99 |
recognizer.adjust_for_ambient_noise(source, duration=0.2)
|
| 100 |
audio_data = recognizer.record(source)
|
| 101 |
-
|
| 102 |
-
# Try Google Speech Recognition
|
| 103 |
try:
|
| 104 |
text = recognizer.recognize_google(audio_data)
|
| 105 |
return text
|
| 106 |
except sr.UnknownValueError:
|
| 107 |
return "Could not understand the audio. Please try with clearer audio."
|
| 108 |
except sr.RequestError as e:
|
| 109 |
-
# Fallback to offline recognition if available
|
| 110 |
try:
|
| 111 |
text = recognizer.recognize_sphinx(audio_data)
|
| 112 |
return text
|
| 113 |
except:
|
| 114 |
return f"Speech recognition service error: {str(e)}"
|
| 115 |
-
|
| 116 |
except Exception as e:
|
| 117 |
return f"Error transcribing audio: {str(e)}"
|
| 118 |
|
| 119 |
def process_video(self, video_file) -> Tuple[List[str], str]:
|
| 120 |
"""Extract frames from video and convert to base64"""
|
| 121 |
try:
|
| 122 |
-
if
|
|
|
|
|
|
|
| 123 |
video_path = video_file.name
|
| 124 |
else:
|
| 125 |
-
|
| 126 |
|
| 127 |
cap = cv2.VideoCapture(video_path)
|
| 128 |
if not cap.isOpened():
|
|
@@ -133,33 +122,26 @@ class MultimodalChatbot:
|
|
| 133 |
frame_count = 0
|
| 134 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 135 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 136 |
-
|
| 137 |
-
# Extract frames (every 60 frames or every 2 seconds)
|
| 138 |
frame_interval = max(60, int(fps * 2)) if fps > 0 else 60
|
| 139 |
|
| 140 |
-
while
|
| 141 |
ret, frame = cap.read()
|
| 142 |
-
if ret
|
| 143 |
-
|
|
|
|
| 144 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 145 |
pil_image = Image.fromarray(rgb_frame)
|
| 146 |
-
|
| 147 |
-
# Resize image to reduce size
|
| 148 |
pil_image.thumbnail((800, 600), Image.Resampling.LANCZOS)
|
| 149 |
-
|
| 150 |
base64_frame = self.encode_image_to_base64(pil_image)
|
| 151 |
if not base64_frame.startswith("Error"):
|
| 152 |
frames.append(base64_frame)
|
| 153 |
timestamp = frame_count / fps if fps > 0 else frame_count
|
| 154 |
frame_descriptions.append(f"Frame at {timestamp:.1f}s")
|
| 155 |
-
|
| 156 |
frame_count += 1
|
| 157 |
|
| 158 |
cap.release()
|
| 159 |
-
|
| 160 |
description = f"Video processed: {len(frames)} frames extracted from {total_frames} total frames"
|
| 161 |
return frames, description
|
| 162 |
-
|
| 163 |
except Exception as e:
|
| 164 |
return [], f"Error processing video: {str(e)}"
|
| 165 |
|
|
@@ -170,36 +152,24 @@ class MultimodalChatbot:
|
|
| 170 |
image_file=None,
|
| 171 |
video_file=None) -> dict:
|
| 172 |
"""Create a multimodal message for the API"""
|
| 173 |
-
|
| 174 |
content_parts = []
|
| 175 |
processing_info = []
|
| 176 |
|
| 177 |
-
# Add text content
|
| 178 |
if text_input:
|
| 179 |
content_parts.append({"type": "text", "text": text_input})
|
| 180 |
|
| 181 |
-
# Process PDF
|
| 182 |
if pdf_file is not None:
|
| 183 |
pdf_text = self.extract_pdf_text(pdf_file)
|
| 184 |
-
content_parts.append({
|
| 185 |
-
"type": "text",
|
| 186 |
-
"text": f"PDF Content:\n{pdf_text}"
|
| 187 |
-
})
|
| 188 |
processing_info.append("π PDF processed")
|
| 189 |
|
| 190 |
-
# Process Audio
|
| 191 |
if audio_file is not None:
|
| 192 |
audio_text = self.transcribe_audio(audio_file)
|
| 193 |
-
content_parts.append({
|
| 194 |
-
"type": "text",
|
| 195 |
-
"text": f"Audio Transcription:\n{audio_text}"
|
| 196 |
-
})
|
| 197 |
processing_info.append("π€ Audio transcribed")
|
| 198 |
|
| 199 |
-
# Process Image - Use text-only approach since vision isn't supported
|
| 200 |
if image_file is not None:
|
| 201 |
-
|
| 202 |
-
if hasattr(image_file, 'size'):
|
| 203 |
width, height = image_file.size
|
| 204 |
mode = image_file.mode
|
| 205 |
content_parts.append({
|
|
@@ -213,7 +183,6 @@ class MultimodalChatbot:
|
|
| 213 |
})
|
| 214 |
processing_info.append("πΌοΈ Image received (metadata only)")
|
| 215 |
|
| 216 |
-
# Process Video - Use text-only approach since vision isn't supported
|
| 217 |
if video_file is not None:
|
| 218 |
frames, video_desc = self.process_video(video_file)
|
| 219 |
content_parts.append({
|
|
@@ -232,12 +201,10 @@ class MultimodalChatbot:
|
|
| 232 |
video_file=None,
|
| 233 |
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
|
| 234 |
"""Main chat function"""
|
| 235 |
-
|
| 236 |
if history is None:
|
| 237 |
history = []
|
| 238 |
|
| 239 |
try:
|
| 240 |
-
# Create user message summary for display
|
| 241 |
user_message_parts = []
|
| 242 |
if text_input:
|
| 243 |
user_message_parts.append(f"Text: {text_input}")
|
|
@@ -251,20 +218,14 @@ class MultimodalChatbot:
|
|
| 251 |
user_message_parts.append("π₯ Video uploaded")
|
| 252 |
|
| 253 |
user_display = " | ".join(user_message_parts)
|
| 254 |
-
|
| 255 |
-
# Create multimodal message
|
| 256 |
user_message, processing_info = self.create_multimodal_message(
|
| 257 |
text_input, pdf_file, audio_file, image_file, video_file
|
| 258 |
)
|
| 259 |
|
| 260 |
-
# Add processing info to display
|
| 261 |
if processing_info:
|
| 262 |
user_display += f"\n{' | '.join(processing_info)}"
|
| 263 |
|
| 264 |
-
# Add to conversation history
|
| 265 |
messages = [user_message]
|
| 266 |
-
|
| 267 |
-
# Get response from Gemma
|
| 268 |
completion = self.client.chat.completions.create(
|
| 269 |
extra_headers={
|
| 270 |
"HTTP-Referer": "https://multimodal-chatbot.local",
|
|
@@ -277,12 +238,8 @@ class MultimodalChatbot:
|
|
| 277 |
)
|
| 278 |
|
| 279 |
bot_response = completion.choices[0].message.content
|
| 280 |
-
|
| 281 |
-
# Update history
|
| 282 |
history.append((user_display, bot_response))
|
| 283 |
-
|
| 284 |
return history, ""
|
| 285 |
-
|
| 286 |
except Exception as e:
|
| 287 |
error_msg = f"Error: {str(e)}"
|
| 288 |
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
|
|
@@ -290,7 +247,6 @@ class MultimodalChatbot:
|
|
| 290 |
|
| 291 |
def create_interface():
|
| 292 |
"""Create the Gradio interface"""
|
| 293 |
-
|
| 294 |
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
|
| 295 |
gr.Markdown("""
|
| 296 |
# π€ Multimodal Chatbot with Gemma 3n
|
|
@@ -305,7 +261,6 @@ def create_interface():
|
|
| 305 |
**Setup**: Enter your OpenRouter API key below to get started
|
| 306 |
""")
|
| 307 |
|
| 308 |
-
# API Key Input Section
|
| 309 |
with gr.Row():
|
| 310 |
with gr.Column():
|
| 311 |
api_key_input = gr.Textbox(
|
|
@@ -320,9 +275,7 @@ def create_interface():
|
|
| 320 |
interactive=False
|
| 321 |
)
|
| 322 |
|
| 323 |
-
# Tabbed Interface
|
| 324 |
with gr.Tabs():
|
| 325 |
-
# Text Chat Tab
|
| 326 |
with gr.TabItem("π¬ Text Chat"):
|
| 327 |
with gr.Row():
|
| 328 |
with gr.Column(scale=1):
|
|
@@ -333,7 +286,6 @@ def create_interface():
|
|
| 333 |
)
|
| 334 |
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 335 |
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 336 |
-
|
| 337 |
with gr.Column(scale=2):
|
| 338 |
text_chatbot = gr.Chatbot(
|
| 339 |
label="Text Chat History",
|
|
@@ -342,7 +294,6 @@ def create_interface():
|
|
| 342 |
show_copy_button=True
|
| 343 |
)
|
| 344 |
|
| 345 |
-
# PDF Chat Tab
|
| 346 |
with gr.TabItem("π PDF Chat"):
|
| 347 |
with gr.Row():
|
| 348 |
with gr.Column(scale=1):
|
|
@@ -358,7 +309,6 @@ def create_interface():
|
|
| 358 |
)
|
| 359 |
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 360 |
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 361 |
-
|
| 362 |
with gr.Column(scale=2):
|
| 363 |
pdf_chatbot = gr.Chatbot(
|
| 364 |
label="PDF Chat History",
|
|
@@ -367,7 +317,6 @@ def create_interface():
|
|
| 367 |
show_copy_button=True
|
| 368 |
)
|
| 369 |
|
| 370 |
-
# Audio Chat Tab
|
| 371 |
with gr.TabItem("π€ Audio Chat"):
|
| 372 |
with gr.Row():
|
| 373 |
with gr.Column(scale=1):
|
|
@@ -383,7 +332,6 @@ def create_interface():
|
|
| 383 |
)
|
| 384 |
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 385 |
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 386 |
-
|
| 387 |
with gr.Column(scale=2):
|
| 388 |
audio_chatbot = gr.Chatbot(
|
| 389 |
label="Audio Chat History",
|
|
@@ -392,7 +340,6 @@ def create_interface():
|
|
| 392 |
show_copy_button=True
|
| 393 |
)
|
| 394 |
|
| 395 |
-
# Image Chat Tab
|
| 396 |
with gr.TabItem("πΌοΈ Image Chat"):
|
| 397 |
with gr.Row():
|
| 398 |
with gr.Column(scale=1):
|
|
@@ -407,7 +354,6 @@ def create_interface():
|
|
| 407 |
)
|
| 408 |
image_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 409 |
image_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 410 |
-
|
| 411 |
with gr.Column(scale=2):
|
| 412 |
image_chatbot = gr.Chatbot(
|
| 413 |
label="Image Chat History",
|
|
@@ -416,7 +362,6 @@ def create_interface():
|
|
| 416 |
show_copy_button=True
|
| 417 |
)
|
| 418 |
|
| 419 |
-
# Video Chat Tab
|
| 420 |
with gr.TabItem("π₯ Video Chat"):
|
| 421 |
with gr.Row():
|
| 422 |
with gr.Column(scale=1):
|
|
@@ -432,7 +377,6 @@ def create_interface():
|
|
| 432 |
)
|
| 433 |
video_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 434 |
video_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 435 |
-
|
| 436 |
with gr.Column(scale=2):
|
| 437 |
video_chatbot = gr.Chatbot(
|
| 438 |
label="Video Chat History",
|
|
@@ -441,7 +385,6 @@ def create_interface():
|
|
| 441 |
show_copy_button=True
|
| 442 |
)
|
| 443 |
|
| 444 |
-
# Combined Chat Tab
|
| 445 |
with gr.TabItem("π Combined Chat"):
|
| 446 |
with gr.Row():
|
| 447 |
with gr.Column(scale=1):
|
|
@@ -450,33 +393,27 @@ def create_interface():
|
|
| 450 |
placeholder="Type your message here...",
|
| 451 |
lines=3
|
| 452 |
)
|
| 453 |
-
|
| 454 |
combined_pdf_input = gr.File(
|
| 455 |
label="π PDF Upload",
|
| 456 |
file_types=[".pdf"],
|
| 457 |
type="filepath"
|
| 458 |
)
|
| 459 |
-
|
| 460 |
combined_audio_input = gr.File(
|
| 461 |
label="π€ Audio Upload",
|
| 462 |
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
| 463 |
type="filepath"
|
| 464 |
)
|
| 465 |
-
|
| 466 |
combined_image_input = gr.Image(
|
| 467 |
label="πΌοΈ Image Upload",
|
| 468 |
type="pil"
|
| 469 |
)
|
| 470 |
-
|
| 471 |
combined_video_input = gr.File(
|
| 472 |
label="π₯ Video Upload",
|
| 473 |
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
| 474 |
type="filepath"
|
| 475 |
)
|
| 476 |
-
|
| 477 |
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
|
| 478 |
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
| 479 |
-
|
| 480 |
with gr.Column(scale=2):
|
| 481 |
combined_chatbot = gr.Chatbot(
|
| 482 |
label="Combined Chat History",
|
|
@@ -485,13 +422,10 @@ def create_interface():
|
|
| 485 |
show_copy_button=True
|
| 486 |
)
|
| 487 |
|
| 488 |
-
# Event handlers
|
| 489 |
def validate_api_key(api_key):
|
| 490 |
if not api_key or len(api_key.strip()) == 0:
|
| 491 |
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(6)]
|
| 492 |
-
|
| 493 |
try:
|
| 494 |
-
# Test the API key by creating a client
|
| 495 |
test_client = OpenAI(
|
| 496 |
base_url="https://openrouter.ai/api/v1",
|
| 497 |
api_key=api_key.strip(),
|
|
@@ -506,7 +440,6 @@ def create_interface():
|
|
| 506 |
history = []
|
| 507 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 508 |
return history, ""
|
| 509 |
-
|
| 510 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 511 |
return chatbot.chat(text_input=text, history=history)
|
| 512 |
|
|
@@ -516,7 +449,6 @@ def create_interface():
|
|
| 516 |
history = []
|
| 517 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 518 |
return history, ""
|
| 519 |
-
|
| 520 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 521 |
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
|
| 522 |
|
|
@@ -526,7 +458,6 @@ def create_interface():
|
|
| 526 |
history = []
|
| 527 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 528 |
return history, ""
|
| 529 |
-
|
| 530 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 531 |
return chatbot.chat(text_input=text, audio_file=audio, history=history)
|
| 532 |
|
|
@@ -536,7 +467,6 @@ def create_interface():
|
|
| 536 |
history = []
|
| 537 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 538 |
return history, ""
|
| 539 |
-
|
| 540 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 541 |
return chatbot.chat(text_input=text, image_file=image, history=history)
|
| 542 |
|
|
@@ -546,7 +476,6 @@ def create_interface():
|
|
| 546 |
history = []
|
| 547 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 548 |
return history, ""
|
| 549 |
-
|
| 550 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 551 |
return chatbot.chat(text_input=text, video_file=video, history=history)
|
| 552 |
|
|
@@ -556,9 +485,8 @@ def create_interface():
|
|
| 556 |
history = []
|
| 557 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 558 |
return history, ""
|
| 559 |
-
|
| 560 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 561 |
-
return chatbot.chat(text, pdf, audio, image, video, history)
|
| 562 |
|
| 563 |
def clear_chat():
|
| 564 |
return [], ""
|
|
@@ -566,7 +494,6 @@ def create_interface():
|
|
| 566 |
def clear_all_inputs():
|
| 567 |
return [], "", None, None, None, None
|
| 568 |
|
| 569 |
-
# API Key validation
|
| 570 |
api_key_input.change(
|
| 571 |
validate_api_key,
|
| 572 |
inputs=[api_key_input],
|
|
@@ -574,7 +501,6 @@ def create_interface():
|
|
| 574 |
image_submit_btn, video_submit_btn, combined_submit_btn]
|
| 575 |
)
|
| 576 |
|
| 577 |
-
# Text chat events
|
| 578 |
text_submit_btn.click(
|
| 579 |
process_text_input,
|
| 580 |
inputs=[api_key_input, text_input, text_chatbot],
|
|
@@ -587,7 +513,6 @@ def create_interface():
|
|
| 587 |
)
|
| 588 |
text_clear_btn.click(clear_chat, outputs=[text_chatbot, text_input])
|
| 589 |
|
| 590 |
-
# PDF chat events
|
| 591 |
pdf_submit_btn.click(
|
| 592 |
process_pdf_input,
|
| 593 |
inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot],
|
|
@@ -595,7 +520,6 @@ def create_interface():
|
|
| 595 |
)
|
| 596 |
pdf_clear_btn.click(lambda: ([], "", None), outputs=[pdf_chatbot, pdf_text_input, pdf_input])
|
| 597 |
|
| 598 |
-
# Audio chat events
|
| 599 |
audio_submit_btn.click(
|
| 600 |
process_audio_input,
|
| 601 |
inputs=[api_key_input, audio_input, audio_text_input, audio_chatbot],
|
|
@@ -603,7 +527,6 @@ def create_interface():
|
|
| 603 |
)
|
| 604 |
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
|
| 605 |
|
| 606 |
-
# Image chat events
|
| 607 |
image_submit_btn.click(
|
| 608 |
process_image_input,
|
| 609 |
inputs=[api_key_input, image_input, image_text_input, image_chatbot],
|
|
@@ -611,7 +534,6 @@ def create_interface():
|
|
| 611 |
)
|
| 612 |
image_clear_btn.click(lambda: ([], "", None), outputs=[image_chatbot, image_text_input, image_input])
|
| 613 |
|
| 614 |
-
# Video chat events
|
| 615 |
video_submit_btn.click(
|
| 616 |
process_video_input,
|
| 617 |
inputs=[api_key_input, video_input, video_text_input, video_chatbot],
|
|
@@ -619,7 +541,6 @@ def create_interface():
|
|
| 619 |
)
|
| 620 |
video_clear_btn.click(lambda: ([], "", None), outputs=[video_chatbot, video_text_input, video_input])
|
| 621 |
|
| 622 |
-
# Combined chat events
|
| 623 |
combined_submit_btn.click(
|
| 624 |
process_combined_input,
|
| 625 |
inputs=[api_key_input, combined_text_input, combined_pdf_input,
|
|
@@ -630,7 +551,6 @@ def create_interface():
|
|
| 630 |
outputs=[combined_chatbot, combined_text_input, combined_pdf_input,
|
| 631 |
combined_audio_input, combined_image_input, combined_video_input])
|
| 632 |
|
| 633 |
-
# Examples and Instructions
|
| 634 |
gr.Markdown("""
|
| 635 |
### π― How to Use Each Tab:
|
| 636 |
|
|
@@ -664,7 +584,6 @@ def create_interface():
|
|
| 664 |
return demo
|
| 665 |
|
| 666 |
if __name__ == "__main__":
|
| 667 |
-
# Required packages (install with pip):
|
| 668 |
required_packages = [
|
| 669 |
"gradio",
|
| 670 |
"openai",
|
|
@@ -687,6 +606,4 @@ if __name__ == "__main__":
|
|
| 687 |
print("π‘ Enter your API key in the web interface when it loads")
|
| 688 |
|
| 689 |
demo = create_interface()
|
| 690 |
-
demo.launch(
|
| 691 |
-
share=True
|
| 692 |
-
)
|
|
|
|
| 27 |
"""Convert PIL Image to base64 string"""
|
| 28 |
try:
|
| 29 |
if isinstance(image, str):
|
|
|
|
| 30 |
with open(image, "rb") as img_file:
|
| 31 |
return base64.b64encode(img_file.read()).decode('utf-8')
|
| 32 |
else:
|
|
|
|
| 33 |
buffered = io.BytesIO()
|
|
|
|
| 34 |
if image.mode == 'RGBA':
|
| 35 |
image = image.convert('RGB')
|
| 36 |
image.save(buffered, format="JPEG", quality=85)
|
|
|
|
| 41 |
def extract_pdf_text(self, pdf_file) -> str:
|
| 42 |
"""Extract text from PDF file"""
|
| 43 |
try:
|
| 44 |
+
if isinstance(pdf_file, str):
|
| 45 |
+
pdf_path = pdf_file
|
| 46 |
+
elif hasattr(pdf_file, 'name'):
|
| 47 |
pdf_path = pdf_file.name
|
| 48 |
else:
|
| 49 |
+
raise ValueError("Invalid PDF file input")
|
| 50 |
|
| 51 |
text = ""
|
| 52 |
with open(pdf_path, 'rb') as file:
|
| 53 |
pdf_reader = PyPDF2.PdfReader(file)
|
| 54 |
for page_num, page in enumerate(pdf_reader.pages):
|
| 55 |
page_text = page.extract_text()
|
| 56 |
+
if page_text and page_text.strip():
|
| 57 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
| 58 |
return text.strip() if text.strip() else "No text could be extracted from this PDF."
|
| 59 |
except Exception as e:
|
|
|
|
| 62 |
def convert_audio_to_wav(self, audio_file) -> str:
|
| 63 |
"""Convert audio file to WAV format for speech recognition"""
|
| 64 |
try:
|
| 65 |
+
if isinstance(audio_file, str):
|
| 66 |
+
audio_path = audio_file
|
| 67 |
+
elif hasattr(audio_file, 'name'):
|
| 68 |
audio_path = audio_file.name
|
| 69 |
else:
|
| 70 |
+
raise ValueError("Invalid audio file input")
|
| 71 |
|
|
|
|
| 72 |
file_ext = os.path.splitext(audio_path)[1].lower()
|
|
|
|
|
|
|
| 73 |
if file_ext == '.wav':
|
| 74 |
return audio_path
|
| 75 |
|
|
|
|
| 76 |
audio = AudioSegment.from_file(audio_path)
|
|
|
|
| 77 |
wav_path = tempfile.mktemp(suffix='.wav')
|
| 78 |
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
|
| 79 |
return wav_path
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
+
return f"Error converting audio: {str(e)}"
|
| 82 |
|
| 83 |
def transcribe_audio(self, audio_file) -> str:
|
| 84 |
"""Transcribe audio file to text"""
|
| 85 |
try:
|
| 86 |
recognizer = sr.Recognizer()
|
|
|
|
|
|
|
| 87 |
wav_path = self.convert_audio_to_wav(audio_file)
|
| 88 |
|
| 89 |
with sr.AudioFile(wav_path) as source:
|
|
|
|
| 90 |
recognizer.adjust_for_ambient_noise(source, duration=0.2)
|
| 91 |
audio_data = recognizer.record(source)
|
|
|
|
|
|
|
| 92 |
try:
|
| 93 |
text = recognizer.recognize_google(audio_data)
|
| 94 |
return text
|
| 95 |
except sr.UnknownValueError:
|
| 96 |
return "Could not understand the audio. Please try with clearer audio."
|
| 97 |
except sr.RequestError as e:
|
|
|
|
| 98 |
try:
|
| 99 |
text = recognizer.recognize_sphinx(audio_data)
|
| 100 |
return text
|
| 101 |
except:
|
| 102 |
return f"Speech recognition service error: {str(e)}"
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
return f"Error transcribing audio: {str(e)}"
|
| 105 |
|
| 106 |
def process_video(self, video_file) -> Tuple[List[str], str]:
|
| 107 |
"""Extract frames from video and convert to base64"""
|
| 108 |
try:
|
| 109 |
+
if isinstance(video_file, str):
|
| 110 |
+
video_path = video_file
|
| 111 |
+
elif hasattr(video_file, 'name'):
|
| 112 |
video_path = video_file.name
|
| 113 |
else:
|
| 114 |
+
raise ValueError("Invalid video file input")
|
| 115 |
|
| 116 |
cap = cv2.VideoCapture(video_path)
|
| 117 |
if not cap.isOpened():
|
|
|
|
| 122 |
frame_count = 0
|
| 123 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 124 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
|
|
|
| 125 |
frame_interval = max(60, int(fps * 2)) if fps > 0 else 60
|
| 126 |
|
| 127 |
+
while True:
|
| 128 |
ret, frame = cap.read()
|
| 129 |
+
if not ret or len(frames) >= 5:
|
| 130 |
+
break
|
| 131 |
+
if frame_count % frame_interval == 0:
|
| 132 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 133 |
pil_image = Image.fromarray(rgb_frame)
|
|
|
|
|
|
|
| 134 |
pil_image.thumbnail((800, 600), Image.Resampling.LANCZOS)
|
|
|
|
| 135 |
base64_frame = self.encode_image_to_base64(pil_image)
|
| 136 |
if not base64_frame.startswith("Error"):
|
| 137 |
frames.append(base64_frame)
|
| 138 |
timestamp = frame_count / fps if fps > 0 else frame_count
|
| 139 |
frame_descriptions.append(f"Frame at {timestamp:.1f}s")
|
|
|
|
| 140 |
frame_count += 1
|
| 141 |
|
| 142 |
cap.release()
|
|
|
|
| 143 |
description = f"Video processed: {len(frames)} frames extracted from {total_frames} total frames"
|
| 144 |
return frames, description
|
|
|
|
| 145 |
except Exception as e:
|
| 146 |
return [], f"Error processing video: {str(e)}"
|
| 147 |
|
|
|
|
| 152 |
image_file=None,
|
| 153 |
video_file=None) -> dict:
|
| 154 |
"""Create a multimodal message for the API"""
|
|
|
|
| 155 |
content_parts = []
|
| 156 |
processing_info = []
|
| 157 |
|
|
|
|
| 158 |
if text_input:
|
| 159 |
content_parts.append({"type": "text", "text": text_input})
|
| 160 |
|
|
|
|
| 161 |
if pdf_file is not None:
|
| 162 |
pdf_text = self.extract_pdf_text(pdf_file)
|
| 163 |
+
content_parts.append({"type": "text", "text": f"PDF Content:\n{pdf_text}"})
|
|
|
|
|
|
|
|
|
|
| 164 |
processing_info.append("π PDF processed")
|
| 165 |
|
|
|
|
| 166 |
if audio_file is not None:
|
| 167 |
audio_text = self.transcribe_audio(audio_file)
|
| 168 |
+
content_parts.append({"type": "text", "text": f"Audio Transcription:\n{audio_text}"})
|
|
|
|
|
|
|
|
|
|
| 169 |
processing_info.append("π€ Audio transcribed")
|
| 170 |
|
|
|
|
| 171 |
if image_file is not None:
|
| 172 |
+
if isinstance(image_file, Image.Image):
|
|
|
|
| 173 |
width, height = image_file.size
|
| 174 |
mode = image_file.mode
|
| 175 |
content_parts.append({
|
|
|
|
| 183 |
})
|
| 184 |
processing_info.append("πΌοΈ Image received (metadata only)")
|
| 185 |
|
|
|
|
| 186 |
if video_file is not None:
|
| 187 |
frames, video_desc = self.process_video(video_file)
|
| 188 |
content_parts.append({
|
|
|
|
| 201 |
video_file=None,
|
| 202 |
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
|
| 203 |
"""Main chat function"""
|
|
|
|
| 204 |
if history is None:
|
| 205 |
history = []
|
| 206 |
|
| 207 |
try:
|
|
|
|
| 208 |
user_message_parts = []
|
| 209 |
if text_input:
|
| 210 |
user_message_parts.append(f"Text: {text_input}")
|
|
|
|
| 218 |
user_message_parts.append("π₯ Video uploaded")
|
| 219 |
|
| 220 |
user_display = " | ".join(user_message_parts)
|
|
|
|
|
|
|
| 221 |
user_message, processing_info = self.create_multimodal_message(
|
| 222 |
text_input, pdf_file, audio_file, image_file, video_file
|
| 223 |
)
|
| 224 |
|
|
|
|
| 225 |
if processing_info:
|
| 226 |
user_display += f"\n{' | '.join(processing_info)}"
|
| 227 |
|
|
|
|
| 228 |
messages = [user_message]
|
|
|
|
|
|
|
| 229 |
completion = self.client.chat.completions.create(
|
| 230 |
extra_headers={
|
| 231 |
"HTTP-Referer": "https://multimodal-chatbot.local",
|
|
|
|
| 238 |
)
|
| 239 |
|
| 240 |
bot_response = completion.choices[0].message.content
|
|
|
|
|
|
|
| 241 |
history.append((user_display, bot_response))
|
|
|
|
| 242 |
return history, ""
|
|
|
|
| 243 |
except Exception as e:
|
| 244 |
error_msg = f"Error: {str(e)}"
|
| 245 |
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
|
|
|
|
| 247 |
|
| 248 |
def create_interface():
|
| 249 |
"""Create the Gradio interface"""
|
|
|
|
| 250 |
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
|
| 251 |
gr.Markdown("""
|
| 252 |
# π€ Multimodal Chatbot with Gemma 3n
|
|
|
|
| 261 |
**Setup**: Enter your OpenRouter API key below to get started
|
| 262 |
""")
|
| 263 |
|
|
|
|
| 264 |
with gr.Row():
|
| 265 |
with gr.Column():
|
| 266 |
api_key_input = gr.Textbox(
|
|
|
|
| 275 |
interactive=False
|
| 276 |
)
|
| 277 |
|
|
|
|
| 278 |
with gr.Tabs():
|
|
|
|
| 279 |
with gr.TabItem("π¬ Text Chat"):
|
| 280 |
with gr.Row():
|
| 281 |
with gr.Column(scale=1):
|
|
|
|
| 286 |
)
|
| 287 |
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 288 |
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
|
| 289 |
with gr.Column(scale=2):
|
| 290 |
text_chatbot = gr.Chatbot(
|
| 291 |
label="Text Chat History",
|
|
|
|
| 294 |
show_copy_button=True
|
| 295 |
)
|
| 296 |
|
|
|
|
| 297 |
with gr.TabItem("π PDF Chat"):
|
| 298 |
with gr.Row():
|
| 299 |
with gr.Column(scale=1):
|
|
|
|
| 309 |
)
|
| 310 |
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 311 |
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
|
| 312 |
with gr.Column(scale=2):
|
| 313 |
pdf_chatbot = gr.Chatbot(
|
| 314 |
label="PDF Chat History",
|
|
|
|
| 317 |
show_copy_button=True
|
| 318 |
)
|
| 319 |
|
|
|
|
| 320 |
with gr.TabItem("π€ Audio Chat"):
|
| 321 |
with gr.Row():
|
| 322 |
with gr.Column(scale=1):
|
|
|
|
| 332 |
)
|
| 333 |
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 334 |
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
|
| 335 |
with gr.Column(scale=2):
|
| 336 |
audio_chatbot = gr.Chatbot(
|
| 337 |
label="Audio Chat History",
|
|
|
|
| 340 |
show_copy_button=True
|
| 341 |
)
|
| 342 |
|
|
|
|
| 343 |
with gr.TabItem("πΌοΈ Image Chat"):
|
| 344 |
with gr.Row():
|
| 345 |
with gr.Column(scale=1):
|
|
|
|
| 354 |
)
|
| 355 |
image_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 356 |
image_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
|
| 357 |
with gr.Column(scale=2):
|
| 358 |
image_chatbot = gr.Chatbot(
|
| 359 |
label="Image Chat History",
|
|
|
|
| 362 |
show_copy_button=True
|
| 363 |
)
|
| 364 |
|
|
|
|
| 365 |
with gr.TabItem("π₯ Video Chat"):
|
| 366 |
with gr.Row():
|
| 367 |
with gr.Column(scale=1):
|
|
|
|
| 377 |
)
|
| 378 |
video_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
| 379 |
video_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
|
| 380 |
with gr.Column(scale=2):
|
| 381 |
video_chatbot = gr.Chatbot(
|
| 382 |
label="Video Chat History",
|
|
|
|
| 385 |
show_copy_button=True
|
| 386 |
)
|
| 387 |
|
|
|
|
| 388 |
with gr.TabItem("π Combined Chat"):
|
| 389 |
with gr.Row():
|
| 390 |
with gr.Column(scale=1):
|
|
|
|
| 393 |
placeholder="Type your message here...",
|
| 394 |
lines=3
|
| 395 |
)
|
|
|
|
| 396 |
combined_pdf_input = gr.File(
|
| 397 |
label="π PDF Upload",
|
| 398 |
file_types=[".pdf"],
|
| 399 |
type="filepath"
|
| 400 |
)
|
|
|
|
| 401 |
combined_audio_input = gr.File(
|
| 402 |
label="π€ Audio Upload",
|
| 403 |
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
| 404 |
type="filepath"
|
| 405 |
)
|
|
|
|
| 406 |
combined_image_input = gr.Image(
|
| 407 |
label="πΌοΈ Image Upload",
|
| 408 |
type="pil"
|
| 409 |
)
|
|
|
|
| 410 |
combined_video_input = gr.File(
|
| 411 |
label="π₯ Video Upload",
|
| 412 |
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
| 413 |
type="filepath"
|
| 414 |
)
|
|
|
|
| 415 |
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
|
| 416 |
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
|
|
|
| 417 |
with gr.Column(scale=2):
|
| 418 |
combined_chatbot = gr.Chatbot(
|
| 419 |
label="Combined Chat History",
|
|
|
|
| 422 |
show_copy_button=True
|
| 423 |
)
|
| 424 |
|
|
|
|
| 425 |
def validate_api_key(api_key):
|
| 426 |
if not api_key or len(api_key.strip()) == 0:
|
| 427 |
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(6)]
|
|
|
|
| 428 |
try:
|
|
|
|
| 429 |
test_client = OpenAI(
|
| 430 |
base_url="https://openrouter.ai/api/v1",
|
| 431 |
api_key=api_key.strip(),
|
|
|
|
| 440 |
history = []
|
| 441 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 442 |
return history, ""
|
|
|
|
| 443 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 444 |
return chatbot.chat(text_input=text, history=history)
|
| 445 |
|
|
|
|
| 449 |
history = []
|
| 450 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 451 |
return history, ""
|
|
|
|
| 452 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 453 |
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
|
| 454 |
|
|
|
|
| 458 |
history = []
|
| 459 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 460 |
return history, ""
|
|
|
|
| 461 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 462 |
return chatbot.chat(text_input=text, audio_file=audio, history=history)
|
| 463 |
|
|
|
|
| 467 |
history = []
|
| 468 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 469 |
return history, ""
|
|
|
|
| 470 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 471 |
return chatbot.chat(text_input=text, image_file=image, history=history)
|
| 472 |
|
|
|
|
| 476 |
history = []
|
| 477 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 478 |
return history, ""
|
|
|
|
| 479 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 480 |
return chatbot.chat(text_input=text, video_file=video, history=history)
|
| 481 |
|
|
|
|
| 485 |
history = []
|
| 486 |
history.append(("Error", "β Please provide a valid API key first"))
|
| 487 |
return history, ""
|
|
|
|
| 488 |
chatbot = MultimodalChatbot(api_key.strip())
|
| 489 |
+
return chatbot.chat(text_input=text, pdf_file=pdf, audio_file=audio, image_file=image, video_file=video, history=history)
|
| 490 |
|
| 491 |
def clear_chat():
|
| 492 |
return [], ""
|
|
|
|
| 494 |
def clear_all_inputs():
|
| 495 |
return [], "", None, None, None, None
|
| 496 |
|
|
|
|
| 497 |
api_key_input.change(
|
| 498 |
validate_api_key,
|
| 499 |
inputs=[api_key_input],
|
|
|
|
| 501 |
image_submit_btn, video_submit_btn, combined_submit_btn]
|
| 502 |
)
|
| 503 |
|
|
|
|
| 504 |
text_submit_btn.click(
|
| 505 |
process_text_input,
|
| 506 |
inputs=[api_key_input, text_input, text_chatbot],
|
|
|
|
| 513 |
)
|
| 514 |
text_clear_btn.click(clear_chat, outputs=[text_chatbot, text_input])
|
| 515 |
|
|
|
|
| 516 |
pdf_submit_btn.click(
|
| 517 |
process_pdf_input,
|
| 518 |
inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot],
|
|
|
|
| 520 |
)
|
| 521 |
pdf_clear_btn.click(lambda: ([], "", None), outputs=[pdf_chatbot, pdf_text_input, pdf_input])
|
| 522 |
|
|
|
|
| 523 |
audio_submit_btn.click(
|
| 524 |
process_audio_input,
|
| 525 |
inputs=[api_key_input, audio_input, audio_text_input, audio_chatbot],
|
|
|
|
| 527 |
)
|
| 528 |
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
|
| 529 |
|
|
|
|
| 530 |
image_submit_btn.click(
|
| 531 |
process_image_input,
|
| 532 |
inputs=[api_key_input, image_input, image_text_input, image_chatbot],
|
|
|
|
| 534 |
)
|
| 535 |
image_clear_btn.click(lambda: ([], "", None), outputs=[image_chatbot, image_text_input, image_input])
|
| 536 |
|
|
|
|
| 537 |
video_submit_btn.click(
|
| 538 |
process_video_input,
|
| 539 |
inputs=[api_key_input, video_input, video_text_input, video_chatbot],
|
|
|
|
| 541 |
)
|
| 542 |
video_clear_btn.click(lambda: ([], "", None), outputs=[video_chatbot, video_text_input, video_input])
|
| 543 |
|
|
|
|
| 544 |
combined_submit_btn.click(
|
| 545 |
process_combined_input,
|
| 546 |
inputs=[api_key_input, combined_text_input, combined_pdf_input,
|
|
|
|
| 551 |
outputs=[combined_chatbot, combined_text_input, combined_pdf_input,
|
| 552 |
combined_audio_input, combined_image_input, combined_video_input])
|
| 553 |
|
|
|
|
| 554 |
gr.Markdown("""
|
| 555 |
### π― How to Use Each Tab:
|
| 556 |
|
|
|
|
| 584 |
return demo
|
| 585 |
|
| 586 |
if __name__ == "__main__":
|
|
|
|
| 587 |
required_packages = [
|
| 588 |
"gradio",
|
| 589 |
"openai",
|
|
|
|
| 606 |
print("π‘ Enter your API key in the web interface when it loads")
|
| 607 |
|
| 608 |
demo = create_interface()
|
| 609 |
+
demo.launch(share=True)
|
|
|
|
|
|