Spaces:
Paused
Paused
| import gradio as gr | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import time | |
| import torch | |
| import spaces | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import re | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers import Qwen2_5_VLForConditionalGeneration | |
| # --------------------------- | |
| # Helper Functions | |
| # --------------------------- | |
| def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str: | |
| """ | |
| Returns an HTML snippet for a thin animated progress bar with a label. | |
| Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples a video file by extracting 10 evenly spaced frames. | |
| Returns a list of tuples (PIL.Image, timestamp). | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| if total_frames <= 0 or fps <= 0: | |
| vidcap.release() | |
| return frames | |
| # Determine 10 evenly spaced frame indices. | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def extract_medicine_names(text): | |
| """ | |
| Extracts medicine names from OCR text output. | |
| Uses a combination of pattern matching and formatting to identify medications. | |
| Returns a formatted list of medicines found. | |
| """ | |
| # Common medicine patterns (extended to catch more formats) | |
| lines = text.split('\n') | |
| medicines = [] | |
| # Look for patterns typical in prescriptions | |
| for line in lines: | |
| # Clean and standardize the line | |
| clean_line = line.strip() | |
| # Skip very short lines, headers, or non-relevant text | |
| if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()): | |
| continue | |
| # Medicine names often appear at the beginning of lines, with dosage info following | |
| # Look for tablet/capsule/mg indicators - strong indicators of medication | |
| if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()): | |
| # Extract the likely medicine name - the part before the dosage/form or the entire line if it's short | |
| medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip() | |
| if medicine_match and len(medicine_match) > 2: | |
| medicines.append(medicine_match) | |
| # Check for brand names or generic medication patterns | |
| elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line): | |
| # Likely a medicine name starting with a capital letter | |
| medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1) | |
| if medicine_parts and len(medicine_parts[0]) > 2: | |
| medicines.append(medicine_parts[0].strip()) | |
| # Remove duplicates while preserving order | |
| unique_medicines = [] | |
| for med in medicines: | |
| if med not in unique_medicines: | |
| unique_medicines.append(med) | |
| return unique_medicines | |
| # Model and Processor Setup | |
| # Qwen2VL OCR (default branch) | |
| QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct | |
| qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) | |
| qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| QV_MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| # RolmOCR branch (@RolmOCR) | |
| ROLMOCR_MODEL_ID = "reducto/RolmOCR" | |
| rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True) | |
| rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| ROLMOCR_MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).to("cuda").eval() | |
| # Main Inference Function | |
| def model_inference(input_dict, history): | |
| text = input_dict["text"].strip() | |
| files = input_dict.get("files", []) | |
| # Check for prescription-specific command | |
| if text.lower().startswith("@prescription") or text.lower().startswith("@med"): | |
| # Specific mode for medicine extraction | |
| if not files: | |
| yield "Error: Please upload a prescription image to extract medicine names." | |
| return | |
| # Use RolmOCR for better text extraction from prescriptions | |
| images = [load_image(image) for image in files[:1]] # Taking just the first image for processing | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": images[0]}, | |
| {"type": "text", "text": "Extract all text from this medical prescription image, focus on medicine names, dosages, and instructions."}, | |
| ], | |
| }] | |
| prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = rolmocr_processor( | |
| text=[prompt_full], | |
| images=images, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| # First, get the complete OCR text | |
| streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| ocr_text = "" | |
| yield progress_bar_html("Processing Prescription with Medicine Extractor") | |
| for new_text in streamer: | |
| ocr_text += new_text | |
| ocr_text = ocr_text.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| # After getting full OCR text, extract medicine names | |
| medicines = extract_medicine_names(ocr_text) | |
| # Format the results nicely | |
| result = "## Extracted Medicine Names\n\n" | |
| if medicines: | |
| for i, med in enumerate(medicines, 1): | |
| result += f"{i}. {med}\n" | |
| else: | |
| result += "No medicine names detected in the prescription.\n\n" | |
| result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```" | |
| yield result | |
| return | |
| # RolmOCR Inference (@RolmOCR) | |
| if text.lower().startswith("@rolmocr"): | |
| # Remove the tag from the query. | |
| text_prompt = text[len("@rolmocr"):].strip() | |
| # Check if a video is provided for inference. | |
| if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")): | |
| video_path = files[0] | |
| frames = downsample_video(video_path) | |
| if not frames: | |
| yield "Error: Could not extract frames from the video." | |
| return | |
| # Build the message: prompt followed by each frame with its timestamp. | |
| content_list = [{"type": "text", "text": text_prompt}] | |
| for image, timestamp in frames: | |
| content_list.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| content_list.append({"type": "image", "image": image}) | |
| messages = [{"role": "user", "content": content_list}] | |
| # For video, extract images only. | |
| video_images = [image for image, _ in frames] | |
| prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = rolmocr_processor( | |
| text=[prompt_full], | |
| images=video_images, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| else: | |
| # Assume image(s) or text query. | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| if text_prompt == "" and not images: | |
| yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text_prompt}, | |
| ], | |
| }] | |
| prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = rolmocr_processor( | |
| text=[prompt_full], | |
| images=images if images else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| # Use a different color scheme for RolmOCR (purple-themed). | |
| yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # Default Inference: Qwen2VL OCR | |
| # Process files: support multiple images. | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| if text == "" and not images: | |
| yield "Error: Please input a text query and optionally image(s)." | |
| return | |
| if text == "" and images: | |
| yield "Error: Please input a text query along with the image(s)." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ], | |
| }] | |
| prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = qwen_processor( | |
| text=[prompt_full], | |
| images=images if images else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing with Qwen2VL OCR") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| # Gradio Interface | |
| examples = [ | |
| [{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}], | |
| [{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}], | |
| [{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}], | |
| [{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}], | |
| [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
| ] | |
| css = """ | |
| .gradio-container { | |
| font-family: 'Roboto', sans-serif; | |
| } | |
| .prescription-header { | |
| background-color: #4B0082; | |
| color: white; | |
| padding: 10px; | |
| border-radius: 5px; | |
| margin-bottom: 10px; | |
| } | |
| """ | |
| description = """ | |
| # **Multimodal OCR with Medicine Extraction** | |
| ## Modes: | |
| - **@Prescription** - Upload a prescription image to extract medicine names | |
| - **@RolmOCR** - Use RolmOCR for general text extraction | |
| - **Default** - Use Qwen2VL OCR for general purposes | |
| Upload your medical prescription images and get the medicine names extracted automatically! | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=model_inference, | |
| description=description, | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox( | |
| label="Query Input", | |
| file_types=["image", "video"], | |
| file_count="multiple", | |
| placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR" | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| cache_examples=False, | |
| css=css | |
| ) | |
| demo.launch(debug=True) |