Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers.image_utils import load_image
|
| 3 |
+
from threading import Thread
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
import spaces
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import re
|
| 11 |
+
from transformers import (
|
| 12 |
+
Qwen2VLForConditionalGeneration,
|
| 13 |
+
AutoProcessor,
|
| 14 |
+
TextIteratorStreamer,
|
| 15 |
+
)
|
| 16 |
+
from transformers import Qwen2_5_VLForConditionalGeneration
|
| 17 |
+
|
| 18 |
+
# ---------------------------
|
| 19 |
+
# Helper Functions
|
| 20 |
+
# ---------------------------
|
| 21 |
+
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
| 22 |
+
"""
|
| 23 |
+
Returns an HTML snippet for a thin animated progress bar with a label.
|
| 24 |
+
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
|
| 25 |
+
"""
|
| 26 |
+
return f'''
|
| 27 |
+
<div style="display: flex; align-items: center;">
|
| 28 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 29 |
+
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
| 30 |
+
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
| 31 |
+
</div>
|
| 32 |
+
</div>
|
| 33 |
+
<style>
|
| 34 |
+
@keyframes loading {{
|
| 35 |
+
0% {{ transform: translateX(-100%); }}
|
| 36 |
+
100% {{ transform: translateX(100%); }}
|
| 37 |
+
}}
|
| 38 |
+
</style>
|
| 39 |
+
'''
|
| 40 |
+
|
| 41 |
+
def downsample_video(video_path):
|
| 42 |
+
"""
|
| 43 |
+
Downsamples a video file by extracting 10 evenly spaced frames.
|
| 44 |
+
Returns a list of tuples (PIL.Image, timestamp).
|
| 45 |
+
"""
|
| 46 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 47 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 48 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 49 |
+
frames = []
|
| 50 |
+
if total_frames <= 0 or fps <= 0:
|
| 51 |
+
vidcap.release()
|
| 52 |
+
return frames
|
| 53 |
+
# Determine 10 evenly spaced frame indices.
|
| 54 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 55 |
+
for i in frame_indices:
|
| 56 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 57 |
+
success, image = vidcap.read()
|
| 58 |
+
if success:
|
| 59 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 60 |
+
pil_image = Image.fromarray(image)
|
| 61 |
+
timestamp = round(i / fps, 2)
|
| 62 |
+
frames.append((pil_image, timestamp))
|
| 63 |
+
vidcap.release()
|
| 64 |
+
return frames
|
| 65 |
+
|
| 66 |
+
def extract_medicine_names(text):
|
| 67 |
+
"""
|
| 68 |
+
Extracts medicine names from OCR text output.
|
| 69 |
+
Uses a combination of pattern matching and formatting to identify medications.
|
| 70 |
+
Returns a formatted list of medicines found.
|
| 71 |
+
"""
|
| 72 |
+
# Common medicine patterns (extended to catch more formats)
|
| 73 |
+
lines = text.split('\n')
|
| 74 |
+
medicines = []
|
| 75 |
+
|
| 76 |
+
# Look for patterns typical in prescriptions
|
| 77 |
+
for line in lines:
|
| 78 |
+
# Clean and standardize the line
|
| 79 |
+
clean_line = line.strip()
|
| 80 |
+
|
| 81 |
+
# Skip very short lines, headers, or non-relevant text
|
| 82 |
+
if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()):
|
| 83 |
+
continue
|
| 84 |
+
|
| 85 |
+
# Medicine names often appear at the beginning of lines, with dosage info following
|
| 86 |
+
# Look for tablet/capsule/mg indicators - strong indicators of medication
|
| 87 |
+
if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()):
|
| 88 |
+
# Extract the likely medicine name - the part before the dosage/form or the entire line if it's short
|
| 89 |
+
medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip()
|
| 90 |
+
if medicine_match and len(medicine_match) > 2:
|
| 91 |
+
medicines.append(medicine_match)
|
| 92 |
+
|
| 93 |
+
# Check for brand names or generic medication patterns
|
| 94 |
+
elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line):
|
| 95 |
+
# Likely a medicine name starting with a capital letter
|
| 96 |
+
medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1)
|
| 97 |
+
if medicine_parts and len(medicine_parts[0]) > 2:
|
| 98 |
+
medicines.append(medicine_parts[0].strip())
|
| 99 |
+
|
| 100 |
+
# Remove duplicates while preserving order
|
| 101 |
+
unique_medicines = []
|
| 102 |
+
for med in medicines:
|
| 103 |
+
if med not in unique_medicines:
|
| 104 |
+
unique_medicines.append(med)
|
| 105 |
+
|
| 106 |
+
return unique_medicines
|
| 107 |
+
|
| 108 |
+
# Model and Processor Setup
|
| 109 |
+
# Qwen2VL OCR (default branch)
|
| 110 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
|
| 111 |
+
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
| 112 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 113 |
+
QV_MODEL_ID,
|
| 114 |
+
trust_remote_code=True,
|
| 115 |
+
torch_dtype=torch.float16
|
| 116 |
+
).to("cuda").eval()
|
| 117 |
+
|
| 118 |
+
# RolmOCR branch (@RolmOCR)
|
| 119 |
+
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
| 120 |
+
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
| 121 |
+
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 122 |
+
ROLMOCR_MODEL_ID,
|
| 123 |
+
trust_remote_code=True,
|
| 124 |
+
torch_dtype=torch.bfloat16
|
| 125 |
+
).to("cuda").eval()
|
| 126 |
+
|
| 127 |
+
# Main Inference Function
|
| 128 |
+
@spaces.GPU
|
| 129 |
+
def model_inference(input_dict, history):
|
| 130 |
+
text = input_dict["text"].strip()
|
| 131 |
+
files = input_dict.get("files", [])
|
| 132 |
+
|
| 133 |
+
# Check for prescription-specific command
|
| 134 |
+
if text.lower().startswith("@prescription") or text.lower().startswith("@med"):
|
| 135 |
+
# Specific mode for medicine extraction
|
| 136 |
+
if not files:
|
| 137 |
+
yield "Error: Please upload a prescription image to extract medicine names."
|
| 138 |
+
return
|
| 139 |
+
|
| 140 |
+
# Use RolmOCR for better text extraction from prescriptions
|
| 141 |
+
images = [load_image(image) for image in files[:1]] # Taking just the first image for processing
|
| 142 |
+
|
| 143 |
+
messages = [{
|
| 144 |
+
"role": "user",
|
| 145 |
+
"content": [
|
| 146 |
+
{"type": "image", "image": images[0]},
|
| 147 |
+
{"type": "text", "text": "Extract all text from this medical prescription image, focus on medicine names, dosages, and instructions."},
|
| 148 |
+
],
|
| 149 |
+
}]
|
| 150 |
+
|
| 151 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 152 |
+
inputs = rolmocr_processor(
|
| 153 |
+
text=[prompt_full],
|
| 154 |
+
images=images,
|
| 155 |
+
return_tensors="pt",
|
| 156 |
+
padding=True,
|
| 157 |
+
).to("cuda")
|
| 158 |
+
|
| 159 |
+
# First, get the complete OCR text
|
| 160 |
+
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
|
| 161 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 162 |
+
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
| 163 |
+
thread.start()
|
| 164 |
+
|
| 165 |
+
ocr_text = ""
|
| 166 |
+
yield progress_bar_html("Processing Prescription with Medicine Extractor")
|
| 167 |
+
|
| 168 |
+
for new_text in streamer:
|
| 169 |
+
ocr_text += new_text
|
| 170 |
+
ocr_text = ocr_text.replace("<|im_end|>", "")
|
| 171 |
+
time.sleep(0.01)
|
| 172 |
+
|
| 173 |
+
# After getting full OCR text, extract medicine names
|
| 174 |
+
medicines = extract_medicine_names(ocr_text)
|
| 175 |
+
|
| 176 |
+
# Format the results nicely
|
| 177 |
+
result = "## Extracted Medicine Names\n\n"
|
| 178 |
+
if medicines:
|
| 179 |
+
for i, med in enumerate(medicines, 1):
|
| 180 |
+
result += f"{i}. {med}\n"
|
| 181 |
+
else:
|
| 182 |
+
result += "No medicine names detected in the prescription.\n\n"
|
| 183 |
+
|
| 184 |
+
result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```"
|
| 185 |
+
yield result
|
| 186 |
+
return
|
| 187 |
+
|
| 188 |
+
# RolmOCR Inference (@RolmOCR)
|
| 189 |
+
if text.lower().startswith("@rolmocr"):
|
| 190 |
+
# Remove the tag from the query.
|
| 191 |
+
text_prompt = text[len("@rolmocr"):].strip()
|
| 192 |
+
# Check if a video is provided for inference.
|
| 193 |
+
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
|
| 194 |
+
video_path = files[0]
|
| 195 |
+
frames = downsample_video(video_path)
|
| 196 |
+
if not frames:
|
| 197 |
+
yield "Error: Could not extract frames from the video."
|
| 198 |
+
return
|
| 199 |
+
# Build the message: prompt followed by each frame with its timestamp.
|
| 200 |
+
content_list = [{"type": "text", "text": text_prompt}]
|
| 201 |
+
for image, timestamp in frames:
|
| 202 |
+
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 203 |
+
content_list.append({"type": "image", "image": image})
|
| 204 |
+
messages = [{"role": "user", "content": content_list}]
|
| 205 |
+
# For video, extract images only.
|
| 206 |
+
video_images = [image for image, _ in frames]
|
| 207 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 208 |
+
inputs = rolmocr_processor(
|
| 209 |
+
text=[prompt_full],
|
| 210 |
+
images=video_images,
|
| 211 |
+
return_tensors="pt",
|
| 212 |
+
padding=True,
|
| 213 |
+
).to("cuda")
|
| 214 |
+
else:
|
| 215 |
+
# Assume image(s) or text query.
|
| 216 |
+
if len(files) > 1:
|
| 217 |
+
images = [load_image(image) for image in files]
|
| 218 |
+
elif len(files) == 1:
|
| 219 |
+
images = [load_image(files[0])]
|
| 220 |
+
else:
|
| 221 |
+
images = []
|
| 222 |
+
if text_prompt == "" and not images:
|
| 223 |
+
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
|
| 224 |
+
return
|
| 225 |
+
messages = [{
|
| 226 |
+
"role": "user",
|
| 227 |
+
"content": [
|
| 228 |
+
*[{"type": "image", "image": image} for image in images],
|
| 229 |
+
{"type": "text", "text": text_prompt},
|
| 230 |
+
],
|
| 231 |
+
}]
|
| 232 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 233 |
+
inputs = rolmocr_processor(
|
| 234 |
+
text=[prompt_full],
|
| 235 |
+
images=images if images else None,
|
| 236 |
+
return_tensors="pt",
|
| 237 |
+
padding=True,
|
| 238 |
+
).to("cuda")
|
| 239 |
+
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
|
| 240 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 241 |
+
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
| 242 |
+
thread.start()
|
| 243 |
+
buffer = ""
|
| 244 |
+
# Use a different color scheme for RolmOCR (purple-themed).
|
| 245 |
+
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
|
| 246 |
+
for new_text in streamer:
|
| 247 |
+
buffer += new_text
|
| 248 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 249 |
+
time.sleep(0.01)
|
| 250 |
+
yield buffer
|
| 251 |
+
return
|
| 252 |
+
|
| 253 |
+
# Default Inference: Qwen2VL OCR
|
| 254 |
+
# Process files: support multiple images.
|
| 255 |
+
if len(files) > 1:
|
| 256 |
+
images = [load_image(image) for image in files]
|
| 257 |
+
elif len(files) == 1:
|
| 258 |
+
images = [load_image(files[0])]
|
| 259 |
+
else:
|
| 260 |
+
images = []
|
| 261 |
+
|
| 262 |
+
if text == "" and not images:
|
| 263 |
+
yield "Error: Please input a text query and optionally image(s)."
|
| 264 |
+
return
|
| 265 |
+
if text == "" and images:
|
| 266 |
+
yield "Error: Please input a text query along with the image(s)."
|
| 267 |
+
return
|
| 268 |
+
|
| 269 |
+
messages = [{
|
| 270 |
+
"role": "user",
|
| 271 |
+
"content": [
|
| 272 |
+
*[{"type": "image", "image": image} for image in images],
|
| 273 |
+
{"type": "text", "text": text},
|
| 274 |
+
],
|
| 275 |
+
}]
|
| 276 |
+
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 277 |
+
inputs = qwen_processor(
|
| 278 |
+
text=[prompt_full],
|
| 279 |
+
images=images if images else None,
|
| 280 |
+
return_tensors="pt",
|
| 281 |
+
padding=True,
|
| 282 |
+
).to("cuda")
|
| 283 |
+
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
| 284 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 285 |
+
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
| 286 |
+
thread.start()
|
| 287 |
+
buffer = ""
|
| 288 |
+
yield progress_bar_html("Processing with Qwen2VL OCR")
|
| 289 |
+
for new_text in streamer:
|
| 290 |
+
buffer += new_text
|
| 291 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 292 |
+
time.sleep(0.01)
|
| 293 |
+
yield buffer
|
| 294 |
+
|
| 295 |
+
# Gradio Interface
|
| 296 |
+
examples = [
|
| 297 |
+
[{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}],
|
| 298 |
+
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
| 299 |
+
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
|
| 300 |
+
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
|
| 301 |
+
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
| 302 |
+
]
|
| 303 |
+
|
| 304 |
+
css = """
|
| 305 |
+
.gradio-container {
|
| 306 |
+
font-family: 'Roboto', sans-serif;
|
| 307 |
+
}
|
| 308 |
+
.prescription-header {
|
| 309 |
+
background-color: #4B0082;
|
| 310 |
+
color: white;
|
| 311 |
+
padding: 10px;
|
| 312 |
+
border-radius: 5px;
|
| 313 |
+
margin-bottom: 10px;
|
| 314 |
+
}
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
description = """
|
| 318 |
+
# **Multimodal OCR with Medicine Extraction**
|
| 319 |
+
|
| 320 |
+
## Modes:
|
| 321 |
+
- **@Prescription** - Upload a prescription image to extract medicine names
|
| 322 |
+
- **@RolmOCR** - Use RolmOCR for general text extraction
|
| 323 |
+
- **Default** - Use Qwen2VL OCR for general purposes
|
| 324 |
+
|
| 325 |
+
Upload your medical prescription images and get the medicine names extracted automatically!
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
demo = gr.ChatInterface(
|
| 329 |
+
fn=model_inference,
|
| 330 |
+
description=description,
|
| 331 |
+
examples=examples,
|
| 332 |
+
textbox=gr.MultimodalTextbox(
|
| 333 |
+
label="Query Input",
|
| 334 |
+
file_types=["image", "video"],
|
| 335 |
+
file_count="multiple",
|
| 336 |
+
placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
|
| 337 |
+
),
|
| 338 |
+
stop_btn="Stop Generation",
|
| 339 |
+
multimodal=True,
|
| 340 |
+
cache_examples=False,
|
| 341 |
+
css=css
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
demo.launch(debug=True)
|