B2B / app.py
satyahaha's picture
Fixed audio
ff9e1fa verified
import os
import torch
import math
import gradio as gr
from PIL import Image
from transformers import (
GPT2LMHeadModel, GPT2Tokenizer,
AutoTokenizer, AutoModelForSequenceClassification,
AutoImageProcessor, AutoModelForImageClassification,
logging
)
from openai import OpenAI
from groq import Groq
import cv2
import numpy as np
import torch.nn as nn
import librosa
logging.set_verbosity_error()
# -----------------------------
# API Keys (set via Space secrets)
# -----------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
device = "cuda" if torch.cuda.is_available() else "cpu"
# TEXT DETECTION
# -----------------------------
def run_hf_detector(text, model_id="roberta-base-openai-detector"):
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained(model_id, token=HF_TOKEN).to(device)
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
human_score, ai_score = float(probs[0]), float(probs[1])
label = "AI-generated" if ai_score > human_score else "Human-generated"
return {"ai_score": ai_score, "human_score": human_score, "hf_label": label}
def calculate_perplexity(text):
model = GPT2LMHeadModel.from_pretrained("gpt2").to(device)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
encodings = tokenizer(text, return_tensors="pt").to(device)
max_length = model.config.n_positions
if encodings.input_ids.size(1) > max_length:
encodings.input_ids = encodings.input_ids[:, :max_length]
encodings.attention_mask = encodings.attention_mask[:, :max_length]
with torch.no_grad():
outputs = model(**encodings, labels=encodings.input_ids)
loss = outputs.loss
perplexity = math.exp(loss.item())
label = "AI-generated" if perplexity < 60 else "Human-generated"
return {"perplexity": perplexity, "perplexity_label": label}
def generate_text_explanation(text, ai_score, human_score):
decision = "AI-generated" if ai_score > human_score else "Human-generated"
prompt = f"""
You are an AI text analysis expert. Explain concisely why this text was classified as '{decision}'.
Text: "{text}"
Explanation:"""
response = client.chat.completions.create(
model="gemma2-9b-it",
messages=[{"role":"user","content":prompt}],
max_tokens=150,
temperature=0.7
)
return response.choices[0].message.content.strip()
def analyze_text(text):
try:
hf_out = run_hf_detector(text)
hf_out["ai_score"] = float(hf_out["ai_score"])
hf_out["human_score"] = float(hf_out["human_score"])
diff = abs(hf_out["ai_score"] - hf_out["human_score"])
confidence = "High" if diff>0.8 else "Medium" if diff>=0.3 else "Low"
perp_out = calculate_perplexity(text)
explanation = generate_text_explanation(text, hf_out["ai_score"], hf_out["human_score"])
return {"ai_score": hf_out["ai_score"], "confidence": confidence, "explanation": explanation}
except:
return {"ai_score":0.0,"confidence":"Low","explanation":"Error analyzing text."}
# -----------------------------
# IMAGE DETECTION
# -----------------------------
image_model_name = "Ateeqq/ai-vs-human-image-detector"
image_processor = AutoImageProcessor.from_pretrained(image_model_name)
image_model = AutoModelForImageClassification.from_pretrained(image_model_name)
image_model.eval()
def generate_image_explanation(ai_probability,human_probability,confidence):
prompt = f"""
You are an AI image analysis expert.
AI: {ai_probability:.4f}, Human: {human_probability:.4f}, Confidence: {confidence}
Explain in 1-2 sentences why it was classified as {'AI-generated' if ai_probability>human_probability else 'Human-generated'}.
"""
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[{"role":"user","content":prompt}],
temperature=0.6
)
return response.choices[0].message.content.strip()
def analyze_image(image):
image = image.convert("RGB")
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
logits = image_model(**inputs).logits
probabilities = torch.nn.functional.softmax(logits/6.0, dim=-1)[0]
ai_prob, human_prob = probabilities[0].item(), probabilities[1].item()
diff = abs(ai_prob-human_prob)
confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
explanation = generate_image_explanation(ai_prob, human_prob, confidence)
return {"ai_probability": ai_prob, "confidence": confidence, "explanation": explanation}
# -----------------------------
# VIDEO DETECTION
# -----------------------------
def extract_frames(video_path, frame_rate=1):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
interval = int(fps*frame_rate)
frames,count = [],0
while cap.isOpened():
ret,frame = cap.read()
if not ret: break
if count%interval==0: frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
count+=1
cap.release()
return frames
def analyze_video(video_path):
frames = extract_frames(video_path, frame_rate=1)
if not frames: return {"error":"No frames extracted."}
ai_probs,human_probs = [],[]
for img in frames:
inputs = image_processor(images=img, return_tensors="pt")
with torch.no_grad(): logits = image_model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=-1)[0]
ai_probs.append(probs[0].item())
human_probs.append(probs[1].item())
avg_ai,avg_human = float(np.mean(ai_probs)), float(np.mean(human_probs))
diff = abs(avg_ai-avg_human)
confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
prompt = f"Video processed {len(frames)} frames. AI: {avg_ai:.4f}, Human: {avg_human:.4f}. Confidence: {confidence}. Explain why it was {'AI-generated' if avg_ai>avg_human else 'Human-generated'}."
response = client.chat.completions.create(model="llama-3.3-70b-versatile", messages=[{"role":"user","content":prompt}], temperature=0.6)
explanation = response.choices[0].message.content.strip()
return {"ai_probability":avg_ai,"confidence":confidence,"explanation":explanation}
# -----------------------------
# AUDIO DETECTION
# -----------------------------
class AudioCNNRNN(nn.Module):
def __init__(self, lstm_hidden_size=128, num_classes=2):
super(AudioCNNRNN, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.lstm = nn.LSTM(input_size=64, hidden_size=lstm_hidden_size, batch_first=True)
self.fc = nn.Linear(lstm_hidden_size, num_classes)
def forward(self, x):
batch_size, seq_len, c, h, w = x.size()
c_in = x.view(batch_size * seq_len, c, h, w)
features = self.cnn(c_in)
features = features.mean(dim=[2, 3])
features = features.view(batch_size, seq_len, -1)
lstm_out, _ = self.lstm(features)
out = self.fc(lstm_out[:, -1, :])
return out
def extract_mel_spectrogram(audio_path, sr=16000, n_mels=64):
waveform, sample_rate = librosa.load(audio_path, sr=sr)
mel_spec = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
return mel_spec_db
def slice_spectrogram(mel_spec, slice_size=128, step=64):
slices = []
for start in range(0, mel_spec.shape[1] - slice_size, step):
slice_ = mel_spec[:, start:start + slice_size]
slices.append(slice_)
return slices
def analyze_audio(audio_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AudioCNNRNN()
model.eval()
model.to(device)
mel_spec = extract_mel_spectrogram(audio_path)
mel_slices = slice_spectrogram(mel_spec, slice_size=128, step=64)
if len(mel_slices) == 0:
raise RuntimeError("No mel slices generated. Check audio length.")
tensor_slices = [torch.tensor(s).unsqueeze(0) for s in mel_slices]
data = torch.stack(tensor_slices)
data = data.unsqueeze(0)
data = data.to(device)
with torch.no_grad():
outputs = model(data)
logits = outputs
temperature = 3.0
probabilities = torch.nn.functional.softmax(logits / temperature, dim=-1)
ai_probability = probabilities[0][0].item()
human_probability = probabilities[0][1].item()
diff = abs(ai_probability - human_probability)
if diff >= 0.7:
confidence = "High"
elif diff >= 0.3:
confidence = "Medium"
else:
confidence = "Low"
prompt = f"""
You are an AI audio analysis expert.
The detector outputs:
- AI-generated probability: {ai_probability:.4f}
- Human-generated probability: {human_probability:.4f}
- Confidence level: {confidence}
Give a short, human-readable explanation (1-2 sentences) of why the audio was likely classified as {'AI-generated' if ai_probability > human_probability else 'human-generated'}.
Base it on audio cues such as tone, pitch patterns, unnatural pauses, synthesis artifacts, or other hints you might infer.
Avoid repeating probabilities; focus on the reasoning.
"""
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
)
return {
"ai_probability": ai_probability,
"confidence": confidence,
"explanation": response.choices[0].message.content.strip()
}
# -----------------------------
# GRADIO UI
# -----------------------------
def format_text_results(text):
res = analyze_text(text)
conf_map = {"High":"🟒 High","Medium":"🟑 Medium","Low":"πŸ”΄ Low"}
return f"### Text Detection\nAI Score: {res['ai_score']:.4f}\nConfidence: {conf_map.get(res['confidence'],res['confidence'])}\nExplanation: {res['explanation']}"
def format_image_results(image):
res = analyze_image(image)
return f"### Image Detection\nAI Probability: {res['ai_probability']:.4f}\n\nConfidence: {res['confidence']}\n\nExplanation: {res['explanation']}"
def format_video_results(video_file):
res = analyze_video(video_file)
if "error" in res: return res["error"]
return f"### Video Detection\nAI Probability: {res['ai_probability']:.4f}\n\nConfidence: {res['confidence']}\n\nExplanation: {res['explanation']}"
def format_audio_results(audio_file):
res = analyze_audio(audio_file)
return f"### Audio Detection\nAI Probability: {res['ai_probability']:.4f}\n\nConfidence: {res['confidence']}\n\nExplanation: {res['explanation']}"
with gr.Blocks() as app:
# Home Page
home_page = gr.Column(visible=True)
with home_page:
gr.Markdown("## 🏠 AI Detection Tool")
gr.Markdown("Select an option below to continue:")
with gr.Row():
text_page_btn = gr.Button("🧠 Text Detection")
image_page_btn = gr.Button("πŸ–ΌοΈ Image Detection")
video_page_btn = gr.Button("🎬 Video Detection") # Add on home page
audio_page_btn = gr.Button("🎡 Audio Detection") # Add this to home page
# Text Page
text_page = gr.Column(visible=False)
with text_page:
gr.Markdown("## 🧠 Text Detection")
text_input = gr.Textbox(lines=5, placeholder="Paste your text here...", label="Input Text")
text_output = gr.Markdown("⚑ Result will appear here after submission...", label="Result")
analyze_text_btn = gr.Button("Analyze Text")
back_btn_text = gr.Button("⬅️ Back")
# Image Page
image_page = gr.Column(visible=False)
with image_page:
gr.Markdown("## πŸ–ΌοΈ Image Detection")
image_input = gr.Image(type="pil", label="Upload Image")
image_output = gr.Markdown("⚑ Result will appear here after image upload...", label="Result")
analyze_image_btn = gr.Button("Analyze Image")
back_btn_image = gr.Button("⬅️ Back")
# Video page
video_page = gr.Column(visible=False)
with video_page:
gr.Markdown("## 🎬 Video Detection")
video_input = gr.Video(label="Upload Video") # Corrected
video_output = gr.Markdown("⚑ Result will appear here after video upload...", label="Result")
analyze_video_btn = gr.Button("Analyze Video")
back_btn_video = gr.Button("⬅️ Back")
audio_page = gr.Column(visible=False)
with audio_page:
gr.Markdown("## 🎡 Audio Detection")
audio_input = gr.Audio(label="Upload Audio", type="filepath") # Use type="filepath" to get local path
audio_output = gr.Markdown("⚑ Result will appear here after audio upload...", label="Result")
analyze_audio_btn = gr.Button("Analyze Audio")
back_btn_audio = gr.Button("⬅️ Back")
def show_video_page():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def show_audio_page():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
audio_page_btn.click(show_audio_page, outputs=[home_page, text_page, image_page, video_page, audio_page])
# Back button returns to home
# Navigation functions
def show_text_page():
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def show_image_page():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def show_home():
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
# Bind navigation buttons
text_page_btn.click(show_text_page, outputs=[home_page, text_page, image_page])
image_page_btn.click(show_image_page, outputs=[home_page, text_page, image_page])
back_btn_text.click(show_home, outputs=[home_page, text_page, image_page])
back_btn_image.click(show_home, outputs=[home_page, text_page, image_page])
video_page_btn.click(show_video_page, outputs=[home_page, text_page, image_page, video_page])
back_btn_video.click(lambda: (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)),
outputs=[home_page, text_page, image_page, video_page])
back_btn_audio.click(lambda: (
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
), outputs=[home_page, text_page, image_page, video_page, audio_page])
# Bind analysis buttons
analyze_text_btn.click(format_text_results, inputs=text_input, outputs=text_output)
analyze_image_btn.click(format_image_results, inputs=image_input, outputs=image_output)
analyze_video_btn.click(format_video_results, inputs=video_input, outputs=video_output)
analyze_audio_btn.click(format_audio_results, inputs=audio_input, outputs=audio_output)
app.launch(share=True, debug=True)