File size: 15,567 Bytes
29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 ff9e1fa 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 1e00889 29a3268 ff9e1fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import os
import torch
import math
import gradio as gr
from PIL import Image
from transformers import (
GPT2LMHeadModel, GPT2Tokenizer,
AutoTokenizer, AutoModelForSequenceClassification,
AutoImageProcessor, AutoModelForImageClassification,
logging
)
from openai import OpenAI
from groq import Groq
import cv2
import numpy as np
import torch.nn as nn
import librosa
logging.set_verbosity_error()
# -----------------------------
# API Keys (set via Space secrets)
# -----------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
device = "cuda" if torch.cuda.is_available() else "cpu"
# TEXT DETECTION
# -----------------------------
def run_hf_detector(text, model_id="roberta-base-openai-detector"):
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained(model_id, token=HF_TOKEN).to(device)
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
human_score, ai_score = float(probs[0]), float(probs[1])
label = "AI-generated" if ai_score > human_score else "Human-generated"
return {"ai_score": ai_score, "human_score": human_score, "hf_label": label}
def calculate_perplexity(text):
model = GPT2LMHeadModel.from_pretrained("gpt2").to(device)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
encodings = tokenizer(text, return_tensors="pt").to(device)
max_length = model.config.n_positions
if encodings.input_ids.size(1) > max_length:
encodings.input_ids = encodings.input_ids[:, :max_length]
encodings.attention_mask = encodings.attention_mask[:, :max_length]
with torch.no_grad():
outputs = model(**encodings, labels=encodings.input_ids)
loss = outputs.loss
perplexity = math.exp(loss.item())
label = "AI-generated" if perplexity < 60 else "Human-generated"
return {"perplexity": perplexity, "perplexity_label": label}
def generate_text_explanation(text, ai_score, human_score):
decision = "AI-generated" if ai_score > human_score else "Human-generated"
prompt = f"""
You are an AI text analysis expert. Explain concisely why this text was classified as '{decision}'.
Text: "{text}"
Explanation:"""
response = client.chat.completions.create(
model="gemma2-9b-it",
messages=[{"role":"user","content":prompt}],
max_tokens=150,
temperature=0.7
)
return response.choices[0].message.content.strip()
def analyze_text(text):
try:
hf_out = run_hf_detector(text)
hf_out["ai_score"] = float(hf_out["ai_score"])
hf_out["human_score"] = float(hf_out["human_score"])
diff = abs(hf_out["ai_score"] - hf_out["human_score"])
confidence = "High" if diff>0.8 else "Medium" if diff>=0.3 else "Low"
perp_out = calculate_perplexity(text)
explanation = generate_text_explanation(text, hf_out["ai_score"], hf_out["human_score"])
return {"ai_score": hf_out["ai_score"], "confidence": confidence, "explanation": explanation}
except:
return {"ai_score":0.0,"confidence":"Low","explanation":"Error analyzing text."}
# -----------------------------
# IMAGE DETECTION
# -----------------------------
image_model_name = "Ateeqq/ai-vs-human-image-detector"
image_processor = AutoImageProcessor.from_pretrained(image_model_name)
image_model = AutoModelForImageClassification.from_pretrained(image_model_name)
image_model.eval()
def generate_image_explanation(ai_probability,human_probability,confidence):
prompt = f"""
You are an AI image analysis expert.
AI: {ai_probability:.4f}, Human: {human_probability:.4f}, Confidence: {confidence}
Explain in 1-2 sentences why it was classified as {'AI-generated' if ai_probability>human_probability else 'Human-generated'}.
"""
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[{"role":"user","content":prompt}],
temperature=0.6
)
return response.choices[0].message.content.strip()
def analyze_image(image):
image = image.convert("RGB")
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
logits = image_model(**inputs).logits
probabilities = torch.nn.functional.softmax(logits/6.0, dim=-1)[0]
ai_prob, human_prob = probabilities[0].item(), probabilities[1].item()
diff = abs(ai_prob-human_prob)
confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
explanation = generate_image_explanation(ai_prob, human_prob, confidence)
return {"ai_probability": ai_prob, "confidence": confidence, "explanation": explanation}
# -----------------------------
# VIDEO DETECTION
# -----------------------------
def extract_frames(video_path, frame_rate=1):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
interval = int(fps*frame_rate)
frames,count = [],0
while cap.isOpened():
ret,frame = cap.read()
if not ret: break
if count%interval==0: frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
count+=1
cap.release()
return frames
def analyze_video(video_path):
frames = extract_frames(video_path, frame_rate=1)
if not frames: return {"error":"No frames extracted."}
ai_probs,human_probs = [],[]
for img in frames:
inputs = image_processor(images=img, return_tensors="pt")
with torch.no_grad(): logits = image_model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=-1)[0]
ai_probs.append(probs[0].item())
human_probs.append(probs[1].item())
avg_ai,avg_human = float(np.mean(ai_probs)), float(np.mean(human_probs))
diff = abs(avg_ai-avg_human)
confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
prompt = f"Video processed {len(frames)} frames. AI: {avg_ai:.4f}, Human: {avg_human:.4f}. Confidence: {confidence}. Explain why it was {'AI-generated' if avg_ai>avg_human else 'Human-generated'}."
response = client.chat.completions.create(model="llama-3.3-70b-versatile", messages=[{"role":"user","content":prompt}], temperature=0.6)
explanation = response.choices[0].message.content.strip()
return {"ai_probability":avg_ai,"confidence":confidence,"explanation":explanation}
# -----------------------------
# AUDIO DETECTION
# -----------------------------
class AudioCNNRNN(nn.Module):
def __init__(self, lstm_hidden_size=128, num_classes=2):
super(AudioCNNRNN, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.lstm = nn.LSTM(input_size=64, hidden_size=lstm_hidden_size, batch_first=True)
self.fc = nn.Linear(lstm_hidden_size, num_classes)
def forward(self, x):
batch_size, seq_len, c, h, w = x.size()
c_in = x.view(batch_size * seq_len, c, h, w)
features = self.cnn(c_in)
features = features.mean(dim=[2, 3])
features = features.view(batch_size, seq_len, -1)
lstm_out, _ = self.lstm(features)
out = self.fc(lstm_out[:, -1, :])
return out
def extract_mel_spectrogram(audio_path, sr=16000, n_mels=64):
waveform, sample_rate = librosa.load(audio_path, sr=sr)
mel_spec = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
return mel_spec_db
def slice_spectrogram(mel_spec, slice_size=128, step=64):
slices = []
for start in range(0, mel_spec.shape[1] - slice_size, step):
slice_ = mel_spec[:, start:start + slice_size]
slices.append(slice_)
return slices
def analyze_audio(audio_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AudioCNNRNN()
model.eval()
model.to(device)
mel_spec = extract_mel_spectrogram(audio_path)
mel_slices = slice_spectrogram(mel_spec, slice_size=128, step=64)
if len(mel_slices) == 0:
raise RuntimeError("No mel slices generated. Check audio length.")
tensor_slices = [torch.tensor(s).unsqueeze(0) for s in mel_slices]
data = torch.stack(tensor_slices)
data = data.unsqueeze(0)
data = data.to(device)
with torch.no_grad():
outputs = model(data)
logits = outputs
temperature = 3.0
probabilities = torch.nn.functional.softmax(logits / temperature, dim=-1)
ai_probability = probabilities[0][0].item()
human_probability = probabilities[0][1].item()
diff = abs(ai_probability - human_probability)
if diff >= 0.7:
confidence = "High"
elif diff >= 0.3:
confidence = "Medium"
else:
confidence = "Low"
prompt = f"""
You are an AI audio analysis expert.
The detector outputs:
- AI-generated probability: {ai_probability:.4f}
- Human-generated probability: {human_probability:.4f}
- Confidence level: {confidence}
Give a short, human-readable explanation (1-2 sentences) of why the audio was likely classified as {'AI-generated' if ai_probability > human_probability else 'human-generated'}.
Base it on audio cues such as tone, pitch patterns, unnatural pauses, synthesis artifacts, or other hints you might infer.
Avoid repeating probabilities; focus on the reasoning.
"""
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
)
return {
"ai_probability": ai_probability,
"confidence": confidence,
"explanation": response.choices[0].message.content.strip()
}
# -----------------------------
# GRADIO UI
# -----------------------------
def format_text_results(text):
res = analyze_text(text)
conf_map = {"High":"π’ High","Medium":"π‘ Medium","Low":"π΄ Low"}
return f"### Text Detection\nAI Score: {res['ai_score']:.4f}\nConfidence: {conf_map.get(res['confidence'],res['confidence'])}\nExplanation: {res['explanation']}"
def format_image_results(image):
res = analyze_image(image)
return f"### Image Detection\nAI Probability: {res['ai_probability']:.4f}\n\nConfidence: {res['confidence']}\n\nExplanation: {res['explanation']}"
def format_video_results(video_file):
res = analyze_video(video_file)
if "error" in res: return res["error"]
return f"### Video Detection\nAI Probability: {res['ai_probability']:.4f}\n\nConfidence: {res['confidence']}\n\nExplanation: {res['explanation']}"
def format_audio_results(audio_file):
res = analyze_audio(audio_file)
return f"### Audio Detection\nAI Probability: {res['ai_probability']:.4f}\n\nConfidence: {res['confidence']}\n\nExplanation: {res['explanation']}"
with gr.Blocks() as app:
# Home Page
home_page = gr.Column(visible=True)
with home_page:
gr.Markdown("## π AI Detection Tool")
gr.Markdown("Select an option below to continue:")
with gr.Row():
text_page_btn = gr.Button("π§ Text Detection")
image_page_btn = gr.Button("πΌοΈ Image Detection")
video_page_btn = gr.Button("π¬ Video Detection") # Add on home page
audio_page_btn = gr.Button("π΅ Audio Detection") # Add this to home page
# Text Page
text_page = gr.Column(visible=False)
with text_page:
gr.Markdown("## π§ Text Detection")
text_input = gr.Textbox(lines=5, placeholder="Paste your text here...", label="Input Text")
text_output = gr.Markdown("β‘ Result will appear here after submission...", label="Result")
analyze_text_btn = gr.Button("Analyze Text")
back_btn_text = gr.Button("β¬
οΈ Back")
# Image Page
image_page = gr.Column(visible=False)
with image_page:
gr.Markdown("## πΌοΈ Image Detection")
image_input = gr.Image(type="pil", label="Upload Image")
image_output = gr.Markdown("β‘ Result will appear here after image upload...", label="Result")
analyze_image_btn = gr.Button("Analyze Image")
back_btn_image = gr.Button("β¬
οΈ Back")
# Video page
video_page = gr.Column(visible=False)
with video_page:
gr.Markdown("## π¬ Video Detection")
video_input = gr.Video(label="Upload Video") # Corrected
video_output = gr.Markdown("β‘ Result will appear here after video upload...", label="Result")
analyze_video_btn = gr.Button("Analyze Video")
back_btn_video = gr.Button("β¬
οΈ Back")
audio_page = gr.Column(visible=False)
with audio_page:
gr.Markdown("## π΅ Audio Detection")
audio_input = gr.Audio(label="Upload Audio", type="filepath") # Use type="filepath" to get local path
audio_output = gr.Markdown("β‘ Result will appear here after audio upload...", label="Result")
analyze_audio_btn = gr.Button("Analyze Audio")
back_btn_audio = gr.Button("β¬
οΈ Back")
def show_video_page():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def show_audio_page():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
audio_page_btn.click(show_audio_page, outputs=[home_page, text_page, image_page, video_page, audio_page])
# Back button returns to home
# Navigation functions
def show_text_page():
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def show_image_page():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def show_home():
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
# Bind navigation buttons
text_page_btn.click(show_text_page, outputs=[home_page, text_page, image_page])
image_page_btn.click(show_image_page, outputs=[home_page, text_page, image_page])
back_btn_text.click(show_home, outputs=[home_page, text_page, image_page])
back_btn_image.click(show_home, outputs=[home_page, text_page, image_page])
video_page_btn.click(show_video_page, outputs=[home_page, text_page, image_page, video_page])
back_btn_video.click(lambda: (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)),
outputs=[home_page, text_page, image_page, video_page])
back_btn_audio.click(lambda: (
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
), outputs=[home_page, text_page, image_page, video_page, audio_page])
# Bind analysis buttons
analyze_text_btn.click(format_text_results, inputs=text_input, outputs=text_output)
analyze_image_btn.click(format_image_results, inputs=image_input, outputs=image_output)
analyze_video_btn.click(format_video_results, inputs=video_input, outputs=video_output)
analyze_audio_btn.click(format_audio_results, inputs=audio_input, outputs=audio_output)
app.launch(share=True, debug=True)
|