Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,43 +9,42 @@ import os
|
|
| 9 |
import subprocess
|
| 10 |
import numpy as np
|
| 11 |
from typing import List, Dict, Tuple, Any
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
try:
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
|
| 29 |
-
|
| 30 |
except Exception as e:
|
| 31 |
-
print(f"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# ---
|
| 35 |
-
|
| 36 |
-
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 37 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
-
# Initialize DeepSeek model
|
| 40 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
-
model_name,
|
| 42 |
-
device_map="auto",
|
| 43 |
-
offload_folder="offload",
|
| 44 |
-
low_cpu_mem_usage=True,
|
| 45 |
-
torch_dtype=torch.float16
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
# Initialize Kokoro TTS (with error handling)
|
| 49 |
VOICE_CHOICES = {
|
| 50 |
'🇺🇸 Female (Default)': 'af',
|
| 51 |
'🇺🇸 Bella': 'af_bella',
|
|
@@ -54,41 +53,81 @@ VOICE_CHOICES = {
|
|
| 54 |
}
|
| 55 |
TTS_ENABLED = False
|
| 56 |
TTS_MODEL = None
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
try:
|
| 60 |
-
if os.path.exists('Kokoro-82M'):
|
| 61 |
-
import sys
|
| 62 |
-
sys.path.append('Kokoro-82M')
|
| 63 |
-
from models import build_model # type: ignore
|
| 64 |
-
from kokoro import generate # type: ignore
|
| 65 |
-
|
| 66 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 67 |
-
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
try:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
try:
|
| 86 |
with DDGS() as ddgs:
|
| 87 |
results = list(ddgs.text(query, max_results=max_results))
|
| 88 |
return [{
|
| 89 |
"title": result.get("title", ""),
|
| 90 |
-
"snippet": result
|
| 91 |
-
"url": result
|
| 92 |
"date": result.get("published", "")
|
| 93 |
} for result in results]
|
| 94 |
except Exception as e:
|
|
@@ -116,23 +155,24 @@ def format_sources(web_results: List[Dict[str, str]]) -> str:
|
|
| 116 |
sources_html = "<div class='sources-container'>"
|
| 117 |
for i, res in enumerate(web_results, 1):
|
| 118 |
title = res["title"] or "Source"
|
| 119 |
-
date = f"<span class='source-date'>{res['date']}</span>" if res
|
|
|
|
| 120 |
sources_html += f"""
|
| 121 |
<div class='source-item'>
|
| 122 |
<div class='source-number'>[{i}]</div>
|
| 123 |
<div class='source-content'>
|
| 124 |
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
|
| 125 |
{date}
|
| 126 |
-
<div class='source-snippet'>{
|
| 127 |
</div>
|
| 128 |
</div>
|
| 129 |
"""
|
| 130 |
sources_html += "</div>"
|
| 131 |
return sources_html
|
| 132 |
|
| 133 |
-
@spaces.GPU(duration=
|
| 134 |
def generate_answer(prompt: str) -> str:
|
| 135 |
-
"""Generate answer using the DeepSeek model"""
|
| 136 |
inputs = tokenizer(
|
| 137 |
prompt,
|
| 138 |
return_tensors="pt",
|
|
@@ -142,52 +182,56 @@ def generate_answer(prompt: str) -> str:
|
|
| 142 |
return_attention_mask=True
|
| 143 |
).to(model.device)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 156 |
|
| 157 |
-
@spaces.GPU(duration=
|
| 158 |
-
def
|
| 159 |
-
"""Generate speech from text using Kokoro TTS model."""
|
| 160 |
-
|
| 161 |
-
|
|
|
|
| 162 |
return None
|
| 163 |
|
| 164 |
try:
|
|
|
|
| 165 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 166 |
|
| 167 |
-
#
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
else:
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
# Clean the text
|
| 186 |
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
| 187 |
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
| 188 |
|
| 189 |
# Split long text into chunks
|
| 190 |
-
max_chars =
|
| 191 |
chunks = []
|
| 192 |
if len(clean_text) > max_chars:
|
| 193 |
sentences = clean_text.split('.')
|
|
@@ -207,7 +251,7 @@ def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model=TTS_MO
|
|
| 207 |
audio_chunks = []
|
| 208 |
for chunk in chunks:
|
| 209 |
if chunk.strip():
|
| 210 |
-
chunk_audio, _ =
|
| 211 |
if isinstance(chunk_audio, torch.Tensor):
|
| 212 |
chunk_audio = chunk_audio.cpu().numpy()
|
| 213 |
audio_chunks.append(chunk_audio)
|
|
@@ -215,35 +259,61 @@ def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model=TTS_MO
|
|
| 215 |
# Concatenate chunks
|
| 216 |
if audio_chunks:
|
| 217 |
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
| 218 |
-
return (
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
| 222 |
except Exception as e:
|
| 223 |
print(f"Error generating speech: {str(e)}")
|
| 224 |
return None
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
| 227 |
-
"""Process user query with streaming effect"""
|
| 228 |
try:
|
| 229 |
if history is None:
|
| 230 |
history = []
|
| 231 |
|
| 232 |
-
#
|
| 233 |
-
web_results = get_web_results(query)
|
| 234 |
-
sources_html = format_sources(web_results)
|
| 235 |
-
|
| 236 |
current_history = history + [[query, "*Searching...*"]]
|
| 237 |
-
|
| 238 |
# Yield initial searching state
|
| 239 |
yield (
|
| 240 |
"*Searching & Thinking...*", # answer_output (Markdown)
|
| 241 |
-
|
| 242 |
"Searching...", # search_btn (Button)
|
| 243 |
current_history, # chat_history_display (Chatbot)
|
| 244 |
None # audio_output (Audio)
|
| 245 |
)
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
# Generate answer
|
| 248 |
prompt = format_prompt(query, web_results)
|
| 249 |
answer = generate_answer(prompt)
|
|
@@ -251,26 +321,27 @@ def process_query(query: str, history: List[List[str]], selected_voice: str = 'a
|
|
| 251 |
|
| 252 |
# Update history before TTS
|
| 253 |
updated_history = history + [[query, final_answer]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
-
# Generate speech
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
final_answer, # answer_output
|
| 259 |
-
sources_html, # sources_output
|
| 260 |
-
"Generating audio...", # search_btn
|
| 261 |
-
updated_history, # chat_history_display
|
| 262 |
-
None # audio_output
|
| 263 |
-
)
|
| 264 |
try:
|
| 265 |
-
audio =
|
| 266 |
if audio is None:
|
| 267 |
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
|
| 268 |
except Exception as e:
|
| 269 |
final_answer += f"\n\n*Error generating audio: {str(e)}*"
|
| 270 |
-
audio = None
|
| 271 |
else:
|
| 272 |
-
final_answer += "\n\n*TTS is disabled.
|
| 273 |
-
audio = None
|
| 274 |
|
| 275 |
# Yield final result
|
| 276 |
yield (
|
|
@@ -278,7 +349,7 @@ def process_query(query: str, history: List[List[str]], selected_voice: str = 'a
|
|
| 278 |
sources_html, # sources_output
|
| 279 |
"Search", # search_btn
|
| 280 |
updated_history, # chat_history_display
|
| 281 |
-
audio
|
| 282 |
)
|
| 283 |
|
| 284 |
except Exception as e:
|
|
@@ -287,13 +358,13 @@ def process_query(query: str, history: List[List[str]], selected_voice: str = 'a
|
|
| 287 |
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 288 |
yield (
|
| 289 |
f"Error: {error_message}", # answer_output
|
| 290 |
-
|
| 291 |
"Search", # search_btn
|
| 292 |
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
| 293 |
None # audio_output
|
| 294 |
)
|
| 295 |
|
| 296 |
-
#
|
| 297 |
css = """
|
| 298 |
.gradio-container {
|
| 299 |
max-width: 1200px !important;
|
|
@@ -303,36 +374,44 @@ css = """
|
|
| 303 |
text-align: center;
|
| 304 |
margin-bottom: 2rem;
|
| 305 |
padding: 2rem 0;
|
| 306 |
-
background: #1a1b1e;
|
| 307 |
border-radius: 12px;
|
| 308 |
color: white;
|
|
|
|
| 309 |
}
|
| 310 |
#header h1 {
|
| 311 |
color: white;
|
| 312 |
font-size: 2.5rem;
|
| 313 |
margin-bottom: 0.5rem;
|
|
|
|
| 314 |
}
|
| 315 |
#header h3 {
|
| 316 |
color: #a8a9ab;
|
| 317 |
}
|
| 318 |
.search-container {
|
| 319 |
-
background: #1a1b1e;
|
| 320 |
border-radius: 12px;
|
| 321 |
-
box-shadow: 0 4px
|
| 322 |
-
padding:
|
| 323 |
-
margin-bottom:
|
| 324 |
}
|
| 325 |
.search-box {
|
| 326 |
padding: 1rem;
|
| 327 |
background: #2c2d30;
|
| 328 |
-
border-radius:
|
| 329 |
margin-bottom: 1rem;
|
|
|
|
| 330 |
}
|
| 331 |
.search-box input[type="text"] {
|
| 332 |
background: #3a3b3e !important;
|
| 333 |
border: 1px solid #4a4b4e !important;
|
| 334 |
color: white !important;
|
| 335 |
border-radius: 8px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
}
|
| 337 |
.search-box input[type="text"]::placeholder {
|
| 338 |
color: #a8a9ab !important;
|
|
@@ -340,23 +419,43 @@ css = """
|
|
| 340 |
.search-box button {
|
| 341 |
background: #2563eb !important;
|
| 342 |
border: none !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
}
|
| 344 |
.results-container {
|
| 345 |
background: #2c2d30;
|
| 346 |
-
border-radius:
|
| 347 |
-
padding:
|
| 348 |
-
margin-top:
|
|
|
|
| 349 |
}
|
| 350 |
.answer-box {
|
| 351 |
background: #3a3b3e;
|
| 352 |
-
border-radius:
|
| 353 |
padding: 1.5rem;
|
| 354 |
color: white;
|
| 355 |
-
margin-bottom:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
}
|
| 357 |
.answer-box p {
|
| 358 |
color: #e5e7eb;
|
| 359 |
-
line-height: 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
}
|
| 361 |
.sources-container {
|
| 362 |
margin-top: 1rem;
|
|
@@ -367,13 +466,16 @@ css = """
|
|
| 367 |
.source-item {
|
| 368 |
display: flex;
|
| 369 |
padding: 12px;
|
| 370 |
-
margin:
|
| 371 |
background: #3a3b3e;
|
| 372 |
border-radius: 8px;
|
| 373 |
transition: all 0.2s;
|
|
|
|
| 374 |
}
|
| 375 |
.source-item:hover {
|
| 376 |
background: #4a4b4e;
|
|
|
|
|
|
|
| 377 |
}
|
| 378 |
.source-number {
|
| 379 |
font-weight: bold;
|
|
@@ -388,7 +490,12 @@ css = """
|
|
| 388 |
font-weight: 500;
|
| 389 |
text-decoration: none;
|
| 390 |
display: block;
|
| 391 |
-
margin-bottom:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
}
|
| 393 |
.source-date {
|
| 394 |
color: #a8a9ab;
|
|
@@ -398,7 +505,7 @@ css = """
|
|
| 398 |
.source-snippet {
|
| 399 |
color: #e5e7eb;
|
| 400 |
font-size: 0.9em;
|
| 401 |
-
line-height: 1.
|
| 402 |
}
|
| 403 |
.chat-history {
|
| 404 |
max-height: 400px;
|
|
@@ -407,6 +514,18 @@ css = """
|
|
| 407 |
background: #2c2d30;
|
| 408 |
border-radius: 8px;
|
| 409 |
margin-top: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
}
|
| 411 |
.examples-container {
|
| 412 |
background: #2c2d30;
|
|
@@ -418,20 +537,73 @@ css = """
|
|
| 418 |
background: #3a3b3e !important;
|
| 419 |
border: 1px solid #4a4b4e !important;
|
| 420 |
color: #e5e7eb !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
}
|
| 422 |
.markdown-content {
|
| 423 |
color: #e5e7eb !important;
|
| 424 |
}
|
| 425 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
| 426 |
color: white !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
}
|
| 428 |
.markdown-content a {
|
| 429 |
color: #60a5fa !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
}
|
| 431 |
.accordion {
|
| 432 |
background: #2c2d30 !important;
|
| 433 |
border-radius: 8px !important;
|
| 434 |
margin-top: 1rem !important;
|
|
|
|
| 435 |
}
|
| 436 |
.voice-selector {
|
| 437 |
margin-top: 1rem;
|
|
@@ -443,10 +615,54 @@ css = """
|
|
| 443 |
background: #3a3b3e !important;
|
| 444 |
color: white !important;
|
| 445 |
border: 1px solid #4a4b4e !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
}
|
| 447 |
"""
|
| 448 |
|
| 449 |
-
#
|
| 450 |
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
| 451 |
chat_history = gr.State([])
|
| 452 |
|
|
@@ -462,13 +678,14 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
|
| 462 |
scale=5,
|
| 463 |
container=False
|
| 464 |
)
|
| 465 |
-
search_btn = gr.Button("Search", variant="primary", scale=1)
|
| 466 |
voice_select = gr.Dropdown(
|
| 467 |
-
choices=list(VOICE_CHOICES.
|
| 468 |
-
value=
|
| 469 |
-
label="
|
| 470 |
-
elem_classes="voice-selector"
|
|
|
|
| 471 |
)
|
|
|
|
| 472 |
|
| 473 |
with gr.Row(elem_classes="results-container"):
|
| 474 |
with gr.Column(scale=2):
|
|
@@ -486,28 +703,33 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
|
| 486 |
with gr.Row(elem_classes="examples-container"):
|
| 487 |
gr.Examples(
|
| 488 |
examples=[
|
| 489 |
-
"
|
| 490 |
-
"
|
| 491 |
"What are the best practices for sustainable living?",
|
| 492 |
-
"
|
| 493 |
],
|
| 494 |
inputs=search_input,
|
| 495 |
label="Try these examples"
|
| 496 |
)
|
| 497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
# Handle interactions
|
| 499 |
search_btn.click(
|
| 500 |
fn=process_query,
|
| 501 |
-
inputs=[search_input, chat_history, voice_select],
|
| 502 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 503 |
)
|
| 504 |
|
| 505 |
# Also trigger search on Enter key
|
| 506 |
search_input.submit(
|
| 507 |
fn=process_query,
|
| 508 |
-
inputs=[search_input, chat_history, voice_select],
|
| 509 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 510 |
)
|
| 511 |
|
| 512 |
if __name__ == "__main__":
|
| 513 |
-
|
|
|
|
|
|
| 9 |
import subprocess
|
| 10 |
import numpy as np
|
| 11 |
from typing import List, Dict, Tuple, Any
|
| 12 |
+
from functools import lru_cache
|
| 13 |
+
import asyncio
|
| 14 |
+
import threading
|
| 15 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
+
|
| 17 |
+
# --- Configuration ---
|
| 18 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 19 |
+
MAX_SEARCH_RESULTS = 5
|
| 20 |
+
TTS_SAMPLE_RATE = 24000
|
| 21 |
+
MAX_TTS_CHARS = 1000
|
| 22 |
+
GPU_DURATION = 30 # for spaces.GPU decorator
|
| 23 |
+
MAX_NEW_TOKENS = 256
|
| 24 |
+
TEMPERATURE = 0.7
|
| 25 |
+
TOP_P = 0.95
|
| 26 |
+
|
| 27 |
+
# --- Initialization ---
|
| 28 |
+
# Initialize model and tokenizer with better error handling
|
| 29 |
try:
|
| 30 |
+
print("Loading tokenizer...")
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 32 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 33 |
+
|
| 34 |
+
print("Loading model...")
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
MODEL_NAME,
|
| 37 |
+
device_map="auto",
|
| 38 |
+
offload_folder="offload",
|
| 39 |
+
low_cpu_mem_usage=True,
|
| 40 |
+
torch_dtype=torch.float16
|
| 41 |
+
)
|
| 42 |
+
print("Model and tokenizer loaded successfully")
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
+
print(f"Error initializing model: {str(e)}")
|
| 45 |
+
raise
|
| 46 |
+
|
| 47 |
+
# --- TTS Setup ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
VOICE_CHOICES = {
|
| 49 |
'🇺🇸 Female (Default)': 'af',
|
| 50 |
'🇺🇸 Bella': 'af_bella',
|
|
|
|
| 53 |
}
|
| 54 |
TTS_ENABLED = False
|
| 55 |
TTS_MODEL = None
|
| 56 |
+
VOICEPACKS = {} # Cache voice packs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
| 59 |
+
def setup_tts():
|
| 60 |
+
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
# Install dependencies first
|
| 64 |
+
subprocess.run(['git', 'lfs', 'install'], check=True)
|
| 65 |
+
if not os.path.exists('Kokoro-82M'):
|
| 66 |
+
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
|
| 67 |
+
|
| 68 |
+
# Install espeak
|
| 69 |
try:
|
| 70 |
+
subprocess.run(['apt-get', 'update'], check=True)
|
| 71 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
| 72 |
+
except subprocess.CalledProcessError:
|
| 73 |
+
try:
|
| 74 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
|
| 75 |
+
except subprocess.CalledProcessError:
|
| 76 |
+
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
|
| 77 |
+
|
| 78 |
+
# Set up Kokoro TTS
|
| 79 |
+
if os.path.exists('Kokoro-82M'):
|
| 80 |
+
import sys
|
| 81 |
+
sys.path.append('Kokoro-82M')
|
| 82 |
+
from models import build_model
|
| 83 |
+
from kokoro import generate
|
| 84 |
+
|
| 85 |
+
# Make these functions accessible globally
|
| 86 |
+
globals()['build_model'] = build_model
|
| 87 |
+
globals()['generate_tts'] = generate
|
| 88 |
+
|
| 89 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 90 |
+
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
| 91 |
+
|
| 92 |
+
# Preload default voice
|
| 93 |
+
default_voice = 'af'
|
| 94 |
+
VOICEPACKS[default_voice] = torch.load(f'Kokoro-82M/voices/{default_voice}.pt',
|
| 95 |
+
map_location=device,
|
| 96 |
+
weights_only=True)
|
| 97 |
+
|
| 98 |
+
# Preload other common voices to reduce latency
|
| 99 |
+
for voice_name in ['af_bella', 'af_sarah', 'af_nicole']:
|
| 100 |
+
try:
|
| 101 |
+
voice_path = f'Kokoro-82M/voices/{voice_name}.pt'
|
| 102 |
+
if os.path.exists(voice_path):
|
| 103 |
+
VOICEPACKS[voice_name] = torch.load(voice_path,
|
| 104 |
+
map_location=device,
|
| 105 |
+
weights_only=True)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
print(f"Warning: Could not preload voice {voice_name}: {str(e)}")
|
| 108 |
+
|
| 109 |
+
TTS_ENABLED = True
|
| 110 |
+
print("TTS setup completed successfully")
|
| 111 |
+
else:
|
| 112 |
+
print("Warning: Kokoro-82M directory not found. TTS disabled.")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
| 115 |
+
TTS_ENABLED = False
|
| 116 |
|
| 117 |
+
# Start TTS setup in a separate thread
|
| 118 |
+
threading.Thread(target=setup_tts, daemon=True).start()
|
| 119 |
+
|
| 120 |
+
# --- Search and Generation Functions ---
|
| 121 |
+
@lru_cache(maxsize=128)
|
| 122 |
+
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
| 123 |
+
"""Get web search results using DuckDuckGo with caching for improved performance"""
|
| 124 |
try:
|
| 125 |
with DDGS() as ddgs:
|
| 126 |
results = list(ddgs.text(query, max_results=max_results))
|
| 127 |
return [{
|
| 128 |
"title": result.get("title", ""),
|
| 129 |
+
"snippet": result.get("body", ""),
|
| 130 |
+
"url": result.get("href", ""),
|
| 131 |
"date": result.get("published", "")
|
| 132 |
} for result in results]
|
| 133 |
except Exception as e:
|
|
|
|
| 155 |
sources_html = "<div class='sources-container'>"
|
| 156 |
for i, res in enumerate(web_results, 1):
|
| 157 |
title = res["title"] or "Source"
|
| 158 |
+
date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else ""
|
| 159 |
+
snippet = res.get("snippet", "")[:150] + "..." if res.get("snippet") else ""
|
| 160 |
sources_html += f"""
|
| 161 |
<div class='source-item'>
|
| 162 |
<div class='source-number'>[{i}]</div>
|
| 163 |
<div class='source-content'>
|
| 164 |
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
|
| 165 |
{date}
|
| 166 |
+
<div class='source-snippet'>{snippet}</div>
|
| 167 |
</div>
|
| 168 |
</div>
|
| 169 |
"""
|
| 170 |
sources_html += "</div>"
|
| 171 |
return sources_html
|
| 172 |
|
| 173 |
+
@spaces.GPU(duration=GPU_DURATION)
|
| 174 |
def generate_answer(prompt: str) -> str:
|
| 175 |
+
"""Generate answer using the DeepSeek model with optimized settings"""
|
| 176 |
inputs = tokenizer(
|
| 177 |
prompt,
|
| 178 |
return_tensors="pt",
|
|
|
|
| 182 |
return_attention_mask=True
|
| 183 |
).to(model.device)
|
| 184 |
|
| 185 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
| 186 |
+
outputs = model.generate(
|
| 187 |
+
inputs.input_ids,
|
| 188 |
+
attention_mask=inputs.attention_mask,
|
| 189 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 190 |
+
temperature=TEMPERATURE,
|
| 191 |
+
top_p=TOP_P,
|
| 192 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 193 |
+
do_sample=True,
|
| 194 |
+
early_stopping=True
|
| 195 |
+
)
|
| 196 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 197 |
|
| 198 |
+
@spaces.GPU(duration=GPU_DURATION)
|
| 199 |
+
def generate_speech(text: str, voice_name: str = 'af') -> Tuple[int, np.ndarray] | None:
|
| 200 |
+
"""Generate speech from text using Kokoro TTS model with improved error handling and caching."""
|
| 201 |
+
global VOICEPACKS, TTS_MODEL, TTS_ENABLED
|
| 202 |
+
|
| 203 |
+
if not TTS_ENABLED or TTS_MODEL is None:
|
| 204 |
return None
|
| 205 |
|
| 206 |
try:
|
| 207 |
+
from kokoro import generate as generate_tts
|
| 208 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 209 |
|
| 210 |
+
# Load voicepack if needed
|
| 211 |
+
if voice_name not in VOICEPACKS:
|
| 212 |
+
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
|
| 213 |
+
|
| 214 |
+
if not os.path.exists(voice_file):
|
| 215 |
+
print(f"Voicepack {voice_name}.pt not found. Falling back to default 'af'.")
|
| 216 |
+
voice_name = 'af'
|
| 217 |
+
|
| 218 |
+
# Check if default is already loaded
|
| 219 |
+
if voice_name not in VOICEPACKS:
|
| 220 |
+
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
|
| 221 |
+
if os.path.exists(voice_file):
|
| 222 |
+
VOICEPACKS[voice_name] = torch.load(voice_file, map_location=device, weights_only=True)
|
| 223 |
+
else:
|
| 224 |
+
print("Default voicepack 'af.pt' not found. Cannot generate audio.")
|
| 225 |
+
return None
|
| 226 |
else:
|
| 227 |
+
VOICEPACKS[voice_name] = torch.load(voice_file, map_location=device, weights_only=True)
|
| 228 |
+
|
|
|
|
| 229 |
# Clean the text
|
| 230 |
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
| 231 |
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
| 232 |
|
| 233 |
# Split long text into chunks
|
| 234 |
+
max_chars = MAX_TTS_CHARS
|
| 235 |
chunks = []
|
| 236 |
if len(clean_text) > max_chars:
|
| 237 |
sentences = clean_text.split('.')
|
|
|
|
| 251 |
audio_chunks = []
|
| 252 |
for chunk in chunks:
|
| 253 |
if chunk.strip():
|
| 254 |
+
chunk_audio, _ = generate_tts(TTS_MODEL, chunk, VOICEPACKS[voice_name], lang='a')
|
| 255 |
if isinstance(chunk_audio, torch.Tensor):
|
| 256 |
chunk_audio = chunk_audio.cpu().numpy()
|
| 257 |
audio_chunks.append(chunk_audio)
|
|
|
|
| 259 |
# Concatenate chunks
|
| 260 |
if audio_chunks:
|
| 261 |
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
| 262 |
+
return (TTS_SAMPLE_RATE, final_audio)
|
| 263 |
+
|
| 264 |
+
return None
|
| 265 |
|
| 266 |
except Exception as e:
|
| 267 |
print(f"Error generating speech: {str(e)}")
|
| 268 |
return None
|
| 269 |
|
| 270 |
+
# --- Asynchronous Processing ---
|
| 271 |
+
async def async_web_search(query: str) -> List[Dict[str, str]]:
|
| 272 |
+
"""Run web search in a non-blocking way"""
|
| 273 |
+
loop = asyncio.get_event_loop()
|
| 274 |
+
return await loop.run_in_executor(None, get_web_results, query)
|
| 275 |
+
|
| 276 |
+
async def async_answer_generation(prompt: str) -> str:
|
| 277 |
+
"""Run answer generation in a non-blocking way"""
|
| 278 |
+
loop = asyncio.get_event_loop()
|
| 279 |
+
return await loop.run_in_executor(None, generate_answer, prompt)
|
| 280 |
+
|
| 281 |
+
async def async_speech_generation(text: str, voice_name: str) -> Tuple[int, np.ndarray] | None:
|
| 282 |
+
"""Run speech generation in a non-blocking way"""
|
| 283 |
+
loop = asyncio.get_event_loop()
|
| 284 |
+
return await loop.run_in_executor(None, generate_speech, text, voice_name)
|
| 285 |
+
|
| 286 |
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
| 287 |
+
"""Process user query with streaming effect and non-blocking operations"""
|
| 288 |
try:
|
| 289 |
if history is None:
|
| 290 |
history = []
|
| 291 |
|
| 292 |
+
# Start the search task
|
|
|
|
|
|
|
|
|
|
| 293 |
current_history = history + [[query, "*Searching...*"]]
|
| 294 |
+
|
| 295 |
# Yield initial searching state
|
| 296 |
yield (
|
| 297 |
"*Searching & Thinking...*", # answer_output (Markdown)
|
| 298 |
+
"<div class='searching'>Searching for results...</div>", # sources_output (HTML)
|
| 299 |
"Searching...", # search_btn (Button)
|
| 300 |
current_history, # chat_history_display (Chatbot)
|
| 301 |
None # audio_output (Audio)
|
| 302 |
)
|
| 303 |
|
| 304 |
+
# Get web results
|
| 305 |
+
web_results = get_web_results(query)
|
| 306 |
+
sources_html = format_sources(web_results)
|
| 307 |
+
|
| 308 |
+
# Update with the search results obtained
|
| 309 |
+
yield (
|
| 310 |
+
"*Analyzing search results...*", # answer_output
|
| 311 |
+
sources_html, # sources_output
|
| 312 |
+
"Generating answer...", # search_btn
|
| 313 |
+
current_history, # chat_history_display
|
| 314 |
+
None # audio_output
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
# Generate answer
|
| 318 |
prompt = format_prompt(query, web_results)
|
| 319 |
answer = generate_answer(prompt)
|
|
|
|
| 321 |
|
| 322 |
# Update history before TTS
|
| 323 |
updated_history = history + [[query, final_answer]]
|
| 324 |
+
|
| 325 |
+
# Update with the answer before generating speech
|
| 326 |
+
yield (
|
| 327 |
+
final_answer, # answer_output
|
| 328 |
+
sources_html, # sources_output
|
| 329 |
+
"Generating audio...", # search_btn
|
| 330 |
+
updated_history, # chat_history_display
|
| 331 |
+
None # audio_output
|
| 332 |
+
)
|
| 333 |
|
| 334 |
+
# Generate speech (but don't block if TTS is still initializing)
|
| 335 |
+
audio = None
|
| 336 |
+
if TTS_ENABLED and TTS_MODEL is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
try:
|
| 338 |
+
audio = generate_speech(final_answer, selected_voice)
|
| 339 |
if audio is None:
|
| 340 |
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
|
| 341 |
except Exception as e:
|
| 342 |
final_answer += f"\n\n*Error generating audio: {str(e)}*"
|
|
|
|
| 343 |
else:
|
| 344 |
+
final_answer += "\n\n*TTS is still initializing or is disabled. Try again in a moment.*"
|
|
|
|
| 345 |
|
| 346 |
# Yield final result
|
| 347 |
yield (
|
|
|
|
| 349 |
sources_html, # sources_output
|
| 350 |
"Search", # search_btn
|
| 351 |
updated_history, # chat_history_display
|
| 352 |
+
audio # audio_output
|
| 353 |
)
|
| 354 |
|
| 355 |
except Exception as e:
|
|
|
|
| 358 |
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 359 |
yield (
|
| 360 |
f"Error: {error_message}", # answer_output
|
| 361 |
+
"<div class='error'>An error occurred during search</div>", # sources_output
|
| 362 |
"Search", # search_btn
|
| 363 |
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
| 364 |
None # audio_output
|
| 365 |
)
|
| 366 |
|
| 367 |
+
# --- Improved UI ---
|
| 368 |
css = """
|
| 369 |
.gradio-container {
|
| 370 |
max-width: 1200px !important;
|
|
|
|
| 374 |
text-align: center;
|
| 375 |
margin-bottom: 2rem;
|
| 376 |
padding: 2rem 0;
|
| 377 |
+
background: linear-gradient(135deg, #1a1b1e, #2d2e32);
|
| 378 |
border-radius: 12px;
|
| 379 |
color: white;
|
| 380 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.2);
|
| 381 |
}
|
| 382 |
#header h1 {
|
| 383 |
color: white;
|
| 384 |
font-size: 2.5rem;
|
| 385 |
margin-bottom: 0.5rem;
|
| 386 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
|
| 387 |
}
|
| 388 |
#header h3 {
|
| 389 |
color: #a8a9ab;
|
| 390 |
}
|
| 391 |
.search-container {
|
| 392 |
+
background: linear-gradient(135deg, #1a1b1e, #2d2e32);
|
| 393 |
border-radius: 12px;
|
| 394 |
+
box-shadow: 0 4px 16px rgba(0,0,0,0.15);
|
| 395 |
+
padding: 1.5rem;
|
| 396 |
+
margin-bottom: 1.5rem;
|
| 397 |
}
|
| 398 |
.search-box {
|
| 399 |
padding: 1rem;
|
| 400 |
background: #2c2d30;
|
| 401 |
+
border-radius: 10px;
|
| 402 |
margin-bottom: 1rem;
|
| 403 |
+
box-shadow: inset 0 2px 4px rgba(0,0,0,0.1);
|
| 404 |
}
|
| 405 |
.search-box input[type="text"] {
|
| 406 |
background: #3a3b3e !important;
|
| 407 |
border: 1px solid #4a4b4e !important;
|
| 408 |
color: white !important;
|
| 409 |
border-radius: 8px !important;
|
| 410 |
+
transition: all 0.3s ease;
|
| 411 |
+
}
|
| 412 |
+
.search-box input[type="text"]:focus {
|
| 413 |
+
border-color: #60a5fa !important;
|
| 414 |
+
box-shadow: 0 0 0 2px rgba(96, 165, 250, 0.3) !important;
|
| 415 |
}
|
| 416 |
.search-box input[type="text"]::placeholder {
|
| 417 |
color: #a8a9ab !important;
|
|
|
|
| 419 |
.search-box button {
|
| 420 |
background: #2563eb !important;
|
| 421 |
border: none !important;
|
| 422 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
|
| 423 |
+
transition: all 0.3s ease !important;
|
| 424 |
+
}
|
| 425 |
+
.search-box button:hover {
|
| 426 |
+
background: #1d4ed8 !important;
|
| 427 |
+
transform: translateY(-1px) !important;
|
| 428 |
+
}
|
| 429 |
+
.search-box button:active {
|
| 430 |
+
transform: translateY(1px) !important;
|
| 431 |
}
|
| 432 |
.results-container {
|
| 433 |
background: #2c2d30;
|
| 434 |
+
border-radius: 10px;
|
| 435 |
+
padding: 1.5rem;
|
| 436 |
+
margin-top: 1.5rem;
|
| 437 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
| 438 |
}
|
| 439 |
.answer-box {
|
| 440 |
background: #3a3b3e;
|
| 441 |
+
border-radius: 10px;
|
| 442 |
padding: 1.5rem;
|
| 443 |
color: white;
|
| 444 |
+
margin-bottom: 1.5rem;
|
| 445 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
|
| 446 |
+
transition: all 0.3s ease;
|
| 447 |
+
}
|
| 448 |
+
.answer-box:hover {
|
| 449 |
+
box-shadow: 0 4px 16px rgba(0,0,0,0.2);
|
| 450 |
}
|
| 451 |
.answer-box p {
|
| 452 |
color: #e5e7eb;
|
| 453 |
+
line-height: 1.7;
|
| 454 |
+
}
|
| 455 |
+
.answer-box code {
|
| 456 |
+
background: #2c2d30;
|
| 457 |
+
border-radius: 4px;
|
| 458 |
+
padding: 2px 4px;
|
| 459 |
}
|
| 460 |
.sources-container {
|
| 461 |
margin-top: 1rem;
|
|
|
|
| 466 |
.source-item {
|
| 467 |
display: flex;
|
| 468 |
padding: 12px;
|
| 469 |
+
margin: 12px 0;
|
| 470 |
background: #3a3b3e;
|
| 471 |
border-radius: 8px;
|
| 472 |
transition: all 0.2s;
|
| 473 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 474 |
}
|
| 475 |
.source-item:hover {
|
| 476 |
background: #4a4b4e;
|
| 477 |
+
transform: translateY(-2px);
|
| 478 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.15);
|
| 479 |
}
|
| 480 |
.source-number {
|
| 481 |
font-weight: bold;
|
|
|
|
| 490 |
font-weight: 500;
|
| 491 |
text-decoration: none;
|
| 492 |
display: block;
|
| 493 |
+
margin-bottom: 6px;
|
| 494 |
+
transition: all 0.2s;
|
| 495 |
+
}
|
| 496 |
+
.source-title:hover {
|
| 497 |
+
color: #93c5fd;
|
| 498 |
+
text-decoration: underline;
|
| 499 |
}
|
| 500 |
.source-date {
|
| 501 |
color: #a8a9ab;
|
|
|
|
| 505 |
.source-snippet {
|
| 506 |
color: #e5e7eb;
|
| 507 |
font-size: 0.9em;
|
| 508 |
+
line-height: 1.5;
|
| 509 |
}
|
| 510 |
.chat-history {
|
| 511 |
max-height: 400px;
|
|
|
|
| 514 |
background: #2c2d30;
|
| 515 |
border-radius: 8px;
|
| 516 |
margin-top: 1rem;
|
| 517 |
+
scrollbar-width: thin;
|
| 518 |
+
scrollbar-color: #4a4b4e #2c2d30;
|
| 519 |
+
}
|
| 520 |
+
.chat-history::-webkit-scrollbar {
|
| 521 |
+
width: 8px;
|
| 522 |
+
}
|
| 523 |
+
.chat-history::-webkit-scrollbar-track {
|
| 524 |
+
background: #2c2d30;
|
| 525 |
+
}
|
| 526 |
+
.chat-history::-webkit-scrollbar-thumb {
|
| 527 |
+
background-color: #4a4b4e;
|
| 528 |
+
border-radius: 20px;
|
| 529 |
}
|
| 530 |
.examples-container {
|
| 531 |
background: #2c2d30;
|
|
|
|
| 537 |
background: #3a3b3e !important;
|
| 538 |
border: 1px solid #4a4b4e !important;
|
| 539 |
color: #e5e7eb !important;
|
| 540 |
+
transition: all 0.2s;
|
| 541 |
+
margin: 4px !important;
|
| 542 |
+
}
|
| 543 |
+
.examples-container button:hover {
|
| 544 |
+
background: #4a4b4e !important;
|
| 545 |
+
transform: translateY(-1px);
|
| 546 |
}
|
| 547 |
.markdown-content {
|
| 548 |
color: #e5e7eb !important;
|
| 549 |
}
|
| 550 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
| 551 |
color: white !important;
|
| 552 |
+
margin-top: 1.2em !important;
|
| 553 |
+
margin-bottom: 0.8em !important;
|
| 554 |
+
}
|
| 555 |
+
.markdown-content h1 {
|
| 556 |
+
font-size: 1.7em !important;
|
| 557 |
+
}
|
| 558 |
+
.markdown-content h2 {
|
| 559 |
+
font-size: 1.5em !important;
|
| 560 |
+
}
|
| 561 |
+
.markdown-content h3 {
|
| 562 |
+
font-size: 1.3em !important;
|
| 563 |
}
|
| 564 |
.markdown-content a {
|
| 565 |
color: #60a5fa !important;
|
| 566 |
+
text-decoration: none !important;
|
| 567 |
+
transition: all 0.2s;
|
| 568 |
+
}
|
| 569 |
+
.markdown-content a:hover {
|
| 570 |
+
color: #93c5fd !important;
|
| 571 |
+
text-decoration: underline !important;
|
| 572 |
+
}
|
| 573 |
+
.markdown-content code {
|
| 574 |
+
background: #2c2d30 !important;
|
| 575 |
+
padding: 2px 6px !important;
|
| 576 |
+
border-radius: 4px !important;
|
| 577 |
+
font-family: monospace !important;
|
| 578 |
+
}
|
| 579 |
+
.markdown-content pre {
|
| 580 |
+
background: #2c2d30 !important;
|
| 581 |
+
padding: 12px !important;
|
| 582 |
+
border-radius: 8px !important;
|
| 583 |
+
overflow-x: auto !important;
|
| 584 |
+
}
|
| 585 |
+
.markdown-content blockquote {
|
| 586 |
+
border-left: 4px solid #60a5fa !important;
|
| 587 |
+
padding-left: 1em !important;
|
| 588 |
+
margin-left: 0 !important;
|
| 589 |
+
color: #a8a9ab !important;
|
| 590 |
+
}
|
| 591 |
+
.markdown-content table {
|
| 592 |
+
border-collapse: collapse !important;
|
| 593 |
+
width: 100% !important;
|
| 594 |
+
}
|
| 595 |
+
.markdown-content th, .markdown-content td {
|
| 596 |
+
padding: 8px 12px !important;
|
| 597 |
+
border: 1px solid #4a4b4e !important;
|
| 598 |
+
}
|
| 599 |
+
.markdown-content th {
|
| 600 |
+
background: #2c2d30 !important;
|
| 601 |
}
|
| 602 |
.accordion {
|
| 603 |
background: #2c2d30 !important;
|
| 604 |
border-radius: 8px !important;
|
| 605 |
margin-top: 1rem !important;
|
| 606 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1) !important;
|
| 607 |
}
|
| 608 |
.voice-selector {
|
| 609 |
margin-top: 1rem;
|
|
|
|
| 615 |
background: #3a3b3e !important;
|
| 616 |
color: white !important;
|
| 617 |
border: 1px solid #4a4b4e !important;
|
| 618 |
+
border-radius: 4px !important;
|
| 619 |
+
padding: 8px !important;
|
| 620 |
+
transition: all 0.2s;
|
| 621 |
+
}
|
| 622 |
+
.voice-selector select:focus {
|
| 623 |
+
border-color: #60a5fa !important;
|
| 624 |
+
}
|
| 625 |
+
.audio-player {
|
| 626 |
+
margin-top: 1rem;
|
| 627 |
+
background: #2c2d30 !important;
|
| 628 |
+
border-radius: 8px !important;
|
| 629 |
+
padding: 0.5rem !important;
|
| 630 |
+
}
|
| 631 |
+
.audio-player audio {
|
| 632 |
+
width: 100% !important;
|
| 633 |
+
}
|
| 634 |
+
.searching, .error {
|
| 635 |
+
padding: 1rem;
|
| 636 |
+
border-radius: 8px;
|
| 637 |
+
text-align: center;
|
| 638 |
+
margin: 1rem 0;
|
| 639 |
+
}
|
| 640 |
+
.searching {
|
| 641 |
+
background: rgba(96, 165, 250, 0.1);
|
| 642 |
+
color: #60a5fa;
|
| 643 |
+
}
|
| 644 |
+
.error {
|
| 645 |
+
background: rgba(239, 68, 68, 0.1);
|
| 646 |
+
color: #ef4444;
|
| 647 |
+
}
|
| 648 |
+
.no-sources {
|
| 649 |
+
padding: 1rem;
|
| 650 |
+
text-align: center;
|
| 651 |
+
color: #a8a9ab;
|
| 652 |
+
background: #2c2d30;
|
| 653 |
+
border-radius: 8px;
|
| 654 |
+
}
|
| 655 |
+
@keyframes pulse {
|
| 656 |
+
0% { opacity: 0.6; }
|
| 657 |
+
50% { opacity: 1; }
|
| 658 |
+
100% { opacity: 0.6; }
|
| 659 |
+
}
|
| 660 |
+
.searching {
|
| 661 |
+
animation: pulse 1.5s infinite;
|
| 662 |
}
|
| 663 |
"""
|
| 664 |
|
| 665 |
+
# --- Gradio Interface ---
|
| 666 |
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
| 667 |
chat_history = gr.State([])
|
| 668 |
|
|
|
|
| 678 |
scale=5,
|
| 679 |
container=False
|
| 680 |
)
|
|
|
|
| 681 |
voice_select = gr.Dropdown(
|
| 682 |
+
choices=list(VOICE_CHOICES.keys()),
|
| 683 |
+
value=list(VOICE_CHOICES.keys())[0],
|
| 684 |
+
label="Voice",
|
| 685 |
+
elem_classes="voice-selector",
|
| 686 |
+
scale=1
|
| 687 |
)
|
| 688 |
+
search_btn = gr.Button("Search", variant="primary", scale=1)
|
| 689 |
|
| 690 |
with gr.Row(elem_classes="results-container"):
|
| 691 |
with gr.Column(scale=2):
|
|
|
|
| 703 |
with gr.Row(elem_classes="examples-container"):
|
| 704 |
gr.Examples(
|
| 705 |
examples=[
|
| 706 |
+
"Latest news about artificial intelligence advances",
|
| 707 |
+
"How does blockchain technology work?",
|
| 708 |
"What are the best practices for sustainable living?",
|
| 709 |
+
"Compare electric vehicles and traditional cars"
|
| 710 |
],
|
| 711 |
inputs=search_input,
|
| 712 |
label="Try these examples"
|
| 713 |
)
|
| 714 |
|
| 715 |
+
# Handle voice selection mapping
|
| 716 |
+
def get_voice_id(voice_name):
|
| 717 |
+
return VOICE_CHOICES.get(voice_name, 'af')
|
| 718 |
+
|
| 719 |
# Handle interactions
|
| 720 |
search_btn.click(
|
| 721 |
fn=process_query,
|
| 722 |
+
inputs=[search_input, chat_history, lambda x: get_voice_id(x), voice_select],
|
| 723 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 724 |
)
|
| 725 |
|
| 726 |
# Also trigger search on Enter key
|
| 727 |
search_input.submit(
|
| 728 |
fn=process_query,
|
| 729 |
+
inputs=[search_input, chat_history, lambda x: get_voice_id(x), voice_select],
|
| 730 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 731 |
)
|
| 732 |
|
| 733 |
if __name__ == "__main__":
|
| 734 |
+
# Start the app with optimized settings
|
| 735 |
+
demo.queue(concurrency_count=5, max_size=20).launch(share=True)
|