Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,199 +1,513 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
| 5 |
from datetime import datetime
|
| 6 |
-
import
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
def get_web_results(query: str, max_results: int = 3) -> list:
|
| 13 |
-
"""Fetch web results synchronously for Zero GPU compatibility."""
|
| 14 |
try:
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
def format_prompt(query: str, web_results: list) -> str:
|
| 24 |
-
"""Create a concise prompt with web context, explicitly instructing citation."""
|
| 25 |
-
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 26 |
-
context = ""
|
| 27 |
-
for i, r in enumerate(web_results, 1): # Start index at 1 for citations
|
| 28 |
-
context += f"- [{i}] {r['title']}: {r['snippet']}\n"
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
"""Create an HTML list of sources with anchors."""
|
| 58 |
if not web_results:
|
| 59 |
-
return "<div>No sources available</div>"
|
| 60 |
-
|
|
|
|
| 61 |
for i, res in enumerate(web_results, 1):
|
|
|
|
|
|
|
| 62 |
sources_html += f"""
|
| 63 |
-
<div class='source-item'
|
| 64 |
-
<
|
| 65 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
</div>
|
| 67 |
"""
|
| 68 |
sources_html += "</div>"
|
| 69 |
return sources_html
|
| 70 |
|
| 71 |
-
|
| 72 |
-
def
|
| 73 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
css = """
|
| 93 |
-
body {
|
| 94 |
-
font-family: 'Arial', sans-serif;
|
| 95 |
-
background: #1a1a1a;
|
| 96 |
-
color: #ffffff;
|
| 97 |
-
}
|
| 98 |
.gradio-container {
|
| 99 |
-
max-width:
|
| 100 |
-
|
| 101 |
-
padding: 15px;
|
| 102 |
}
|
| 103 |
-
|
| 104 |
text-align: center;
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
}
|
| 110 |
-
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
|
| 111 |
-
.header p { color: #bdc3c7; font-size: 1em; }
|
| 112 |
.search-box {
|
| 113 |
-
|
| 114 |
-
|
| 115 |
border-radius: 8px;
|
| 116 |
-
|
| 117 |
}
|
| 118 |
-
.search-box input {
|
| 119 |
-
background: #
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
border-radius:
|
|
|
|
|
|
|
|
|
|
| 123 |
}
|
| 124 |
.search-box button {
|
| 125 |
-
background: #
|
| 126 |
border: none !important;
|
| 127 |
-
border-radius: 5px !important;
|
| 128 |
}
|
| 129 |
.results-container {
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
}
|
| 135 |
.answer-box {
|
| 136 |
-
|
| 137 |
-
background: #2c2c2c;
|
| 138 |
-
padding: 15px;
|
| 139 |
border-radius: 8px;
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
}
|
| 142 |
-
.
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
background: #2c2c2c;
|
| 146 |
-
padding: 10px;
|
| 147 |
border-radius: 8px;
|
| 148 |
-
|
| 149 |
-
}
|
| 150 |
-
.source-item {
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
margin-top: 15px;
|
| 156 |
-
background: #2c2c2c;
|
| 157 |
-
padding: 10px;
|
| 158 |
border-radius: 8px;
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
}
|
| 161 |
-
|
| 162 |
"""
|
| 163 |
|
| 164 |
-
#
|
| 165 |
-
with gr.Blocks(title="
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
gr.Markdown("
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
with gr.
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
|
|
|
| 185 |
search_btn.click(
|
| 186 |
-
fn=
|
| 187 |
-
inputs=[search_input,
|
| 188 |
-
outputs=[
|
| 189 |
)
|
|
|
|
|
|
|
| 190 |
search_input.submit(
|
| 191 |
-
fn=
|
| 192 |
-
inputs=[search_input,
|
| 193 |
-
outputs=[
|
| 194 |
)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
# Launch the app
|
| 198 |
if __name__ == "__main__":
|
| 199 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import spaces
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
+
import time
|
| 6 |
+
import torch
|
| 7 |
from datetime import datetime
|
| 8 |
+
import os
|
| 9 |
+
import subprocess
|
| 10 |
+
import numpy as np
|
| 11 |
+
from typing import List, Dict, Tuple, Any
|
| 12 |
|
| 13 |
+
# Install required dependencies for Kokoro with better error handling
|
| 14 |
+
try:
|
| 15 |
+
subprocess.run(['git', 'lfs', 'install'], check=True)
|
| 16 |
+
if not os.path.exists('Kokoro-82M'):
|
| 17 |
+
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
|
| 18 |
|
| 19 |
+
# Try installing espeak with proper package manager commands
|
|
|
|
|
|
|
| 20 |
try:
|
| 21 |
+
subprocess.run(['apt-get', 'update'], check=True)
|
| 22 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
| 23 |
+
except subprocess.CalledProcessError:
|
| 24 |
+
print("Warning: Could not install espeak. Attempting espeak-ng...")
|
| 25 |
+
try:
|
| 26 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
|
| 27 |
+
except subprocess.CalledProcessError:
|
| 28 |
+
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
|
| 29 |
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Warning: Initial setup error: {str(e)}")
|
| 32 |
+
print("Continuing with limited functionality...")
|
| 33 |
|
| 34 |
+
# --- Initialization (Do this ONCE) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
+
# Initialize DeepSeek model
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
model_name,
|
| 42 |
+
device_map="auto",
|
| 43 |
+
offload_folder="offload",
|
| 44 |
+
low_cpu_mem_usage=True,
|
| 45 |
+
torch_dtype=torch.float16
|
| 46 |
+
)
|
| 47 |
|
| 48 |
+
# Initialize Kokoro TTS (with error handling)
|
| 49 |
+
VOICE_CHOICES = {
|
| 50 |
+
'🇺🇸 Female (Default)': 'af',
|
| 51 |
+
'🇺🇸 Bella': 'af_bella',
|
| 52 |
+
'🇺🇸 Sarah': 'af_sarah',
|
| 53 |
+
'🇺🇸 Nicole': 'af_nicole'
|
| 54 |
+
}
|
| 55 |
+
TTS_ENABLED = False
|
| 56 |
+
TTS_MODEL = None
|
| 57 |
+
VOICEPACK = None
|
| 58 |
|
| 59 |
+
try:
|
| 60 |
+
if os.path.exists('Kokoro-82M'):
|
| 61 |
+
import sys
|
| 62 |
+
sys.path.append('Kokoro-82M')
|
| 63 |
+
from models import build_model # type: ignore
|
| 64 |
+
from kokoro import generate # type: ignore
|
| 65 |
|
| 66 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 67 |
+
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
| 68 |
|
| 69 |
+
# Load default voice
|
| 70 |
+
try:
|
| 71 |
+
VOICEPACK = torch.load('Kokoro-82M/voices/af.pt', map_location=device, weights_only=True)
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Warning: Could not load default voice: {e}")
|
| 74 |
+
raise
|
| 75 |
|
| 76 |
+
TTS_ENABLED = True
|
| 77 |
+
else:
|
| 78 |
+
print("Warning: Kokoro-82M directory not found. TTS disabled.")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
| 81 |
+
TTS_ENABLED = False
|
| 82 |
|
| 83 |
+
def get_web_results(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
| 84 |
+
"""Get web search results using DuckDuckGo"""
|
| 85 |
+
try:
|
| 86 |
+
with DDGS() as ddgs:
|
| 87 |
+
results = list(ddgs.text(query, max_results=max_results))
|
| 88 |
+
return [{
|
| 89 |
+
"title": result.get("title", ""),
|
| 90 |
+
"snippet": result["body"],
|
| 91 |
+
"url": result["href"],
|
| 92 |
+
"date": result.get("published", "")
|
| 93 |
+
} for result in results]
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"Error in web search: {e}")
|
| 96 |
+
return []
|
| 97 |
+
|
| 98 |
+
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
| 99 |
+
"""Format the prompt with web context"""
|
| 100 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 101 |
+
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
| 102 |
+
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
|
| 103 |
+
Current Time: {current_time}
|
| 104 |
+
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
| 105 |
+
Query: {query}
|
| 106 |
+
Web Context:
|
| 107 |
+
{context_lines}
|
| 108 |
+
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
|
| 109 |
+
Answer:"""
|
| 110 |
|
| 111 |
+
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
| 112 |
+
"""Format sources with more details"""
|
|
|
|
| 113 |
if not web_results:
|
| 114 |
+
return "<div class='no-sources'>No sources available</div>"
|
| 115 |
+
|
| 116 |
+
sources_html = "<div class='sources-container'>"
|
| 117 |
for i, res in enumerate(web_results, 1):
|
| 118 |
+
title = res["title"] or "Source"
|
| 119 |
+
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
|
| 120 |
sources_html += f"""
|
| 121 |
+
<div class='source-item'>
|
| 122 |
+
<div class='source-number'>[{i}]</div>
|
| 123 |
+
<div class='source-content'>
|
| 124 |
+
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
|
| 125 |
+
{date}
|
| 126 |
+
<div class='source-snippet'>{res['snippet'][:150]}...</div>
|
| 127 |
+
</div>
|
| 128 |
</div>
|
| 129 |
"""
|
| 130 |
sources_html += "</div>"
|
| 131 |
return sources_html
|
| 132 |
|
| 133 |
+
@spaces.GPU(duration=30)
|
| 134 |
+
def generate_answer(prompt: str) -> str:
|
| 135 |
+
"""Generate answer using the DeepSeek model"""
|
| 136 |
+
inputs = tokenizer(
|
| 137 |
+
prompt,
|
| 138 |
+
return_tensors="pt",
|
| 139 |
+
padding=True,
|
| 140 |
+
truncation=True,
|
| 141 |
+
max_length=512,
|
| 142 |
+
return_attention_mask=True
|
| 143 |
+
).to(model.device)
|
| 144 |
+
|
| 145 |
+
outputs = model.generate(
|
| 146 |
+
inputs.input_ids,
|
| 147 |
+
attention_mask=inputs.attention_mask,
|
| 148 |
+
max_new_tokens=256,
|
| 149 |
+
temperature=0.7,
|
| 150 |
+
top_p=0.95,
|
| 151 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 152 |
+
do_sample=True,
|
| 153 |
+
early_stopping=True
|
| 154 |
+
)
|
| 155 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 156 |
+
|
| 157 |
+
@spaces.GPU(duration=30)
|
| 158 |
+
def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model=TTS_MODEL, voicepack=VOICEPACK) -> Tuple[int, np.ndarray] | None:
|
| 159 |
+
"""Generate speech from text using Kokoro TTS model."""
|
| 160 |
+
if not TTS_ENABLED or tts_model is None:
|
| 161 |
+
print("TTS is not enabled or model is not loaded.")
|
| 162 |
+
return None
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 166 |
+
|
| 167 |
+
# Handle voicepack loading
|
| 168 |
+
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
|
| 169 |
+
if voice_name == 'af' and voicepack is not None:
|
| 170 |
+
# Use the pre-loaded default voicepack
|
| 171 |
+
pass
|
| 172 |
+
elif os.path.exists(voice_file):
|
| 173 |
+
# Load the selected voicepack if it exists
|
| 174 |
+
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
| 175 |
+
else:
|
| 176 |
+
# Fall back to default 'af' if selected voicepack is missing
|
| 177 |
+
print(f"Voicepack {voice_name}.pt not found. Falling back to default 'af'.")
|
| 178 |
+
voice_file = 'Kokoro-82M/voices/af.pt'
|
| 179 |
+
if os.path.exists(voice_file):
|
| 180 |
+
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
| 181 |
+
else:
|
| 182 |
+
print("Default voicepack 'af.pt' not found. Cannot generate audio.")
|
| 183 |
+
return None
|
| 184 |
+
|
| 185 |
+
# Clean the text
|
| 186 |
+
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
| 187 |
+
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
| 188 |
|
| 189 |
+
# Split long text into chunks
|
| 190 |
+
max_chars = 1000
|
| 191 |
+
chunks = []
|
| 192 |
+
if len(clean_text) > max_chars:
|
| 193 |
+
sentences = clean_text.split('.')
|
| 194 |
+
current_chunk = ""
|
| 195 |
+
for sentence in sentences:
|
| 196 |
+
if len(current_chunk) + len(sentence) + 1 < max_chars:
|
| 197 |
+
current_chunk += sentence + "."
|
| 198 |
+
else:
|
| 199 |
+
chunks.append(current_chunk.strip())
|
| 200 |
+
current_chunk = sentence + "."
|
| 201 |
+
if current_chunk:
|
| 202 |
+
chunks.append(current_chunk.strip())
|
| 203 |
+
else:
|
| 204 |
+
chunks = [clean_text]
|
| 205 |
|
| 206 |
+
# Generate audio for each chunk
|
| 207 |
+
audio_chunks = []
|
| 208 |
+
for chunk in chunks:
|
| 209 |
+
if chunk.strip():
|
| 210 |
+
chunk_audio, _ = generate(tts_model, chunk, voicepack, lang='a')
|
| 211 |
+
if isinstance(chunk_audio, torch.Tensor):
|
| 212 |
+
chunk_audio = chunk_audio.cpu().numpy()
|
| 213 |
+
audio_chunks.append(chunk_audio)
|
| 214 |
|
| 215 |
+
# Concatenate chunks
|
| 216 |
+
if audio_chunks:
|
| 217 |
+
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
| 218 |
+
return (24000, final_audio)
|
| 219 |
+
else:
|
| 220 |
+
return None
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
print(f"Error generating speech: {str(e)}")
|
| 224 |
+
return None
|
| 225 |
+
|
| 226 |
+
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
| 227 |
+
"""Process user query with streaming effect"""
|
| 228 |
+
try:
|
| 229 |
+
if history is None:
|
| 230 |
+
history = []
|
| 231 |
|
| 232 |
+
# Get web results first
|
| 233 |
+
web_results = get_web_results(query)
|
| 234 |
+
sources_html = format_sources(web_results)
|
| 235 |
|
| 236 |
+
current_history = history + [[query, "*Searching...*"]]
|
| 237 |
|
| 238 |
+
# Yield initial searching state
|
| 239 |
+
yield (
|
| 240 |
+
"*Searching & Thinking...*", # answer_output (Markdown)
|
| 241 |
+
sources_html, # sources_output (HTML)
|
| 242 |
+
"Searching...", # search_btn (Button)
|
| 243 |
+
current_history, # chat_history_display (Chatbot)
|
| 244 |
+
None # audio_output (Audio)
|
| 245 |
+
)
|
| 246 |
|
| 247 |
+
# Generate answer
|
| 248 |
+
prompt = format_prompt(query, web_results)
|
| 249 |
+
answer = generate_answer(prompt)
|
| 250 |
+
final_answer = answer.split("Answer:")[-1].strip()
|
| 251 |
|
| 252 |
+
# Update history before TTS
|
| 253 |
+
updated_history = history + [[query, final_answer]]
|
| 254 |
+
|
| 255 |
+
# Generate speech from the answer (only if enabled)
|
| 256 |
+
if TTS_ENABLED:
|
| 257 |
+
yield (
|
| 258 |
+
final_answer, # answer_output
|
| 259 |
+
sources_html, # sources_output
|
| 260 |
+
"Generating audio...", # search_btn
|
| 261 |
+
updated_history, # chat_history_display
|
| 262 |
+
None # audio_output
|
| 263 |
+
)
|
| 264 |
+
try:
|
| 265 |
+
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
| 266 |
+
if audio is None:
|
| 267 |
+
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
|
| 268 |
+
except Exception as e:
|
| 269 |
+
final_answer += f"\n\n*Error generating audio: {str(e)}*"
|
| 270 |
+
audio = None
|
| 271 |
+
else:
|
| 272 |
+
final_answer += "\n\n*TTS is disabled. Audio not available.*"
|
| 273 |
+
audio = None
|
| 274 |
+
|
| 275 |
+
# Yield final result
|
| 276 |
+
yield (
|
| 277 |
+
final_answer, # answer_output
|
| 278 |
+
sources_html, # sources_output
|
| 279 |
+
"Search", # search_btn
|
| 280 |
+
updated_history, # chat_history_display
|
| 281 |
+
audio if audio is not None else None # audio_output
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
except Exception as e:
|
| 285 |
+
error_message = str(e)
|
| 286 |
+
if "GPU quota" in error_message:
|
| 287 |
+
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 288 |
+
yield (
|
| 289 |
+
f"Error: {error_message}", # answer_output
|
| 290 |
+
sources_html, # sources_output
|
| 291 |
+
"Search", # search_btn
|
| 292 |
+
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
| 293 |
+
None # audio_output
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Update the CSS for better contrast and readability
|
| 297 |
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
.gradio-container {
|
| 299 |
+
max-width: 1200px !important;
|
| 300 |
+
background-color: #f7f7f8 !important;
|
|
|
|
| 301 |
}
|
| 302 |
+
#header {
|
| 303 |
text-align: center;
|
| 304 |
+
margin-bottom: 2rem;
|
| 305 |
+
padding: 2rem 0;
|
| 306 |
+
background: #1a1b1e;
|
| 307 |
+
border-radius: 12px;
|
| 308 |
+
color: white;
|
| 309 |
+
}
|
| 310 |
+
#header h1 {
|
| 311 |
+
color: white;
|
| 312 |
+
font-size: 2.5rem;
|
| 313 |
+
margin-bottom: 0.5rem;
|
| 314 |
+
}
|
| 315 |
+
#header h3 {
|
| 316 |
+
color: #a8a9ab;
|
| 317 |
+
}
|
| 318 |
+
.search-container {
|
| 319 |
+
background: #1a1b1e;
|
| 320 |
+
border-radius: 12px;
|
| 321 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
| 322 |
+
padding: 1rem;
|
| 323 |
+
margin-bottom: 1rem;
|
| 324 |
}
|
|
|
|
|
|
|
| 325 |
.search-box {
|
| 326 |
+
padding: 1rem;
|
| 327 |
+
background: #2c2d30;
|
| 328 |
border-radius: 8px;
|
| 329 |
+
margin-bottom: 1rem;
|
| 330 |
}
|
| 331 |
+
.search-box input[type="text"] {
|
| 332 |
+
background: #3a3b3e !important;
|
| 333 |
+
border: 1px solid #4a4b4e !important;
|
| 334 |
+
color: white !important;
|
| 335 |
+
border-radius: 8px !important;
|
| 336 |
+
}
|
| 337 |
+
.search-box input[type="text"]::placeholder {
|
| 338 |
+
color: #a8a9ab !important;
|
| 339 |
}
|
| 340 |
.search-box button {
|
| 341 |
+
background: #2563eb !important;
|
| 342 |
border: none !important;
|
|
|
|
| 343 |
}
|
| 344 |
.results-container {
|
| 345 |
+
background: #2c2d30;
|
| 346 |
+
border-radius: 8px;
|
| 347 |
+
padding: 1rem;
|
| 348 |
+
margin-top: 1rem;
|
| 349 |
}
|
| 350 |
.answer-box {
|
| 351 |
+
background: #3a3b3e;
|
|
|
|
|
|
|
| 352 |
border-radius: 8px;
|
| 353 |
+
padding: 1.5rem;
|
| 354 |
+
color: white;
|
| 355 |
+
margin-bottom: 1rem;
|
| 356 |
+
}
|
| 357 |
+
.answer-box p {
|
| 358 |
+
color: #e5e7eb;
|
| 359 |
+
line-height: 1.6;
|
| 360 |
}
|
| 361 |
+
.sources-container {
|
| 362 |
+
margin-top: 1rem;
|
| 363 |
+
background: #2c2d30;
|
|
|
|
|
|
|
| 364 |
border-radius: 8px;
|
| 365 |
+
padding: 1rem;
|
| 366 |
+
}
|
| 367 |
+
.source-item {
|
| 368 |
+
display: flex;
|
| 369 |
+
padding: 12px;
|
| 370 |
+
margin: 8px 0;
|
| 371 |
+
background: #3a3b3e;
|
|
|
|
|
|
|
|
|
|
| 372 |
border-radius: 8px;
|
| 373 |
+
transition: all 0.2s;
|
| 374 |
+
}
|
| 375 |
+
.source-item:hover {
|
| 376 |
+
background: #4a4b4e;
|
| 377 |
+
}
|
| 378 |
+
.source-number {
|
| 379 |
+
font-weight: bold;
|
| 380 |
+
margin-right: 12px;
|
| 381 |
+
color: #60a5fa;
|
| 382 |
+
}
|
| 383 |
+
.source-content {
|
| 384 |
+
flex: 1;
|
| 385 |
+
}
|
| 386 |
+
.source-title {
|
| 387 |
+
color: #60a5fa;
|
| 388 |
+
font-weight: 500;
|
| 389 |
+
text-decoration: none;
|
| 390 |
+
display: block;
|
| 391 |
+
margin-bottom: 4px;
|
| 392 |
+
}
|
| 393 |
+
.source-date {
|
| 394 |
+
color: #a8a9ab;
|
| 395 |
+
font-size: 0.9em;
|
| 396 |
+
margin-left: 8px;
|
| 397 |
+
}
|
| 398 |
+
.source-snippet {
|
| 399 |
+
color: #e5e7eb;
|
| 400 |
+
font-size: 0.9em;
|
| 401 |
+
line-height: 1.4;
|
| 402 |
+
}
|
| 403 |
+
.chat-history {
|
| 404 |
+
max-height: 400px;
|
| 405 |
+
overflow-y: auto;
|
| 406 |
+
padding: 1rem;
|
| 407 |
+
background: #2c2d30;
|
| 408 |
+
border-radius: 8px;
|
| 409 |
+
margin-top: 1rem;
|
| 410 |
+
}
|
| 411 |
+
.examples-container {
|
| 412 |
+
background: #2c2d30;
|
| 413 |
+
border-radius: 8px;
|
| 414 |
+
padding: 1rem;
|
| 415 |
+
margin-top: 1rem;
|
| 416 |
+
}
|
| 417 |
+
.examples-container button {
|
| 418 |
+
background: #3a3b3e !important;
|
| 419 |
+
border: 1px solid #4a4b4e !important;
|
| 420 |
+
color: #e5e7eb !important;
|
| 421 |
+
}
|
| 422 |
+
.markdown-content {
|
| 423 |
+
color: #e5e7eb !important;
|
| 424 |
+
}
|
| 425 |
+
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
| 426 |
+
color: white !important;
|
| 427 |
+
}
|
| 428 |
+
.markdown-content a {
|
| 429 |
+
color: #60a5fa !important;
|
| 430 |
+
}
|
| 431 |
+
.accordion {
|
| 432 |
+
background: #2c2d30 !important;
|
| 433 |
+
border-radius: 8px !important;
|
| 434 |
+
margin-top: 1rem !important;
|
| 435 |
+
}
|
| 436 |
+
.voice-selector {
|
| 437 |
+
margin-top: 1rem;
|
| 438 |
+
background: #2c2d30;
|
| 439 |
+
border-radius: 8px;
|
| 440 |
+
padding: 0.5rem;
|
| 441 |
+
}
|
| 442 |
+
.voice-selector select {
|
| 443 |
+
background: #3a3b3e !important;
|
| 444 |
+
color: white !important;
|
| 445 |
+
border: 1px solid #4a4b4e !important;
|
| 446 |
}
|
|
|
|
| 447 |
"""
|
| 448 |
|
| 449 |
+
# Update the Gradio interface layout
|
| 450 |
+
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
| 451 |
+
chat_history = gr.State([])
|
| 452 |
+
|
| 453 |
+
with gr.Column(elem_id="header"):
|
| 454 |
+
gr.Markdown("# 🔍 AI Search Assistant")
|
| 455 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
| 456 |
+
|
| 457 |
+
with gr.Column(elem_classes="search-container"):
|
| 458 |
+
with gr.Row(elem_classes="search-box"):
|
| 459 |
+
search_input = gr.Textbox(
|
| 460 |
+
label="",
|
| 461 |
+
placeholder="Ask anything...",
|
| 462 |
+
scale=5,
|
| 463 |
+
container=False
|
| 464 |
+
)
|
| 465 |
+
search_btn = gr.Button("Search", variant="primary", scale=1)
|
| 466 |
+
voice_select = gr.Dropdown(
|
| 467 |
+
choices=list(VOICE_CHOICES.items()),
|
| 468 |
+
value='af',
|
| 469 |
+
label="Select Voice",
|
| 470 |
+
elem_classes="voice-selector"
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
with gr.Row(elem_classes="results-container"):
|
| 474 |
+
with gr.Column(scale=2):
|
| 475 |
+
with gr.Column(elem_classes="answer-box"):
|
| 476 |
+
answer_output = gr.Markdown(elem_classes="markdown-content")
|
| 477 |
+
with gr.Row():
|
| 478 |
+
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
|
| 479 |
+
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
| 480 |
+
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
| 481 |
+
with gr.Column(scale=1):
|
| 482 |
+
with gr.Column(elem_classes="sources-box"):
|
| 483 |
+
gr.Markdown("### Sources")
|
| 484 |
+
sources_output = gr.HTML()
|
| 485 |
+
|
| 486 |
+
with gr.Row(elem_classes="examples-container"):
|
| 487 |
+
gr.Examples(
|
| 488 |
+
examples=[
|
| 489 |
+
"musk explores blockchain for doge",
|
| 490 |
+
"nvidia to launch new gaming card",
|
| 491 |
+
"What are the best practices for sustainable living?",
|
| 492 |
+
"tesla mistaken for asteroid"
|
| 493 |
+
],
|
| 494 |
+
inputs=search_input,
|
| 495 |
+
label="Try these examples"
|
| 496 |
+
)
|
| 497 |
|
| 498 |
+
# Handle interactions
|
| 499 |
search_btn.click(
|
| 500 |
+
fn=process_query,
|
| 501 |
+
inputs=[search_input, chat_history, voice_select],
|
| 502 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 503 |
)
|
| 504 |
+
|
| 505 |
+
# Also trigger search on Enter key
|
| 506 |
search_input.submit(
|
| 507 |
+
fn=process_query,
|
| 508 |
+
inputs=[search_input, chat_history, voice_select],
|
| 509 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 510 |
)
|
| 511 |
|
|
|
|
|
|
|
| 512 |
if __name__ == "__main__":
|
| 513 |
+
demo.launch(share=True)
|