Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,13 +13,17 @@ from functools import lru_cache
|
|
| 13 |
import asyncio
|
| 14 |
import threading
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# --- Configuration ---
|
| 18 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 19 |
MAX_SEARCH_RESULTS = 5
|
| 20 |
TTS_SAMPLE_RATE = 24000
|
| 21 |
-
MAX_TTS_CHARS = 1000
|
| 22 |
-
GPU_DURATION =
|
| 23 |
MAX_NEW_TOKENS = 256
|
| 24 |
TEMPERATURE = 0.7
|
| 25 |
TOP_P = 0.95
|
|
@@ -30,18 +34,25 @@ try:
|
|
| 30 |
print("Loading tokenizer...")
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 32 |
tokenizer.pad_token = tokenizer.eos_token
|
| 33 |
-
|
| 34 |
print("Loading model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
MODEL_NAME,
|
| 37 |
-
device_map=
|
| 38 |
-
offload_folder="offload",
|
| 39 |
low_cpu_mem_usage=True,
|
| 40 |
-
torch_dtype=
|
| 41 |
)
|
|
|
|
| 42 |
print("Model and tokenizer loaded successfully")
|
| 43 |
except Exception as e:
|
| 44 |
print(f"Error initializing model: {str(e)}")
|
|
|
|
|
|
|
| 45 |
raise
|
| 46 |
|
| 47 |
# --- TTS Setup ---
|
|
@@ -54,82 +65,149 @@ VOICE_CHOICES = {
|
|
| 54 |
TTS_ENABLED = False
|
| 55 |
TTS_MODEL = None
|
| 56 |
VOICEPACKS = {} # Cache voice packs
|
|
|
|
| 57 |
|
| 58 |
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
| 59 |
def setup_tts():
|
| 60 |
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
| 61 |
-
|
| 62 |
try:
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
-
|
| 71 |
-
subprocess.run(['
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
print("
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
# Set up Kokoro TTS
|
| 79 |
-
if os.path.exists(
|
| 80 |
import sys
|
| 81 |
-
sys.path
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
else:
|
| 112 |
-
print("Warning:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
except Exception as e:
|
| 114 |
-
print(f"Warning:
|
| 115 |
TTS_ENABLED = False
|
| 116 |
|
| 117 |
# Start TTS setup in a separate thread
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# --- Search and Generation Functions ---
|
| 121 |
@lru_cache(maxsize=128)
|
| 122 |
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
| 123 |
"""Get web search results using DuckDuckGo with caching for improved performance"""
|
|
|
|
| 124 |
try:
|
| 125 |
with DDGS() as ddgs:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
print(f"Error in web search: {e}")
|
| 135 |
return []
|
|
@@ -137,32 +215,38 @@ def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[D
|
|
| 137 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
| 138 |
"""Format the prompt with web context"""
|
| 139 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 140 |
-
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
| 142 |
Current Time: {current_time}
|
| 143 |
-
|
| 144 |
-
Query: {query}
|
| 145 |
Web Context:
|
| 146 |
-
{context_lines}
|
| 147 |
-
|
|
|
|
|
|
|
| 148 |
Answer:"""
|
|
|
|
|
|
|
| 149 |
|
| 150 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
| 151 |
"""Format sources with more details"""
|
| 152 |
if not web_results:
|
| 153 |
-
return "<div class='no-sources'>No sources
|
| 154 |
|
| 155 |
sources_html = "<div class='sources-container'>"
|
| 156 |
for i, res in enumerate(web_results, 1):
|
| 157 |
-
title = res
|
| 158 |
-
|
| 159 |
-
|
|
|
|
| 160 |
sources_html += f"""
|
| 161 |
<div class='source-item'>
|
| 162 |
<div class='source-number'>[{i}]</div>
|
| 163 |
<div class='source-content'>
|
| 164 |
-
<a href="{
|
| 165 |
-
{date}
|
| 166 |
<div class='source-snippet'>{snippet}</div>
|
| 167 |
</div>
|
| 168 |
</div>
|
|
@@ -170,566 +254,450 @@ def format_sources(web_results: List[Dict[str, str]]) -> str:
|
|
| 170 |
sources_html += "</div>"
|
| 171 |
return sources_html
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
@spaces.GPU(duration=GPU_DURATION)
|
| 199 |
-
def generate_speech(text: str, voice_name: str = 'af') -> Tuple[int, np.ndarray] | None:
|
| 200 |
-
"""Generate speech from text using Kokoro TTS model with improved error handling and caching."""
|
| 201 |
-
global VOICEPACKS, TTS_MODEL, TTS_ENABLED
|
| 202 |
-
|
| 203 |
if not TTS_ENABLED or TTS_MODEL is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return None
|
| 205 |
|
| 206 |
try:
|
| 207 |
-
from
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
if
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
else:
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
else:
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
if chunk.strip():
|
| 254 |
-
chunk_audio, _ = generate_tts(TTS_MODEL, chunk, VOICEPACKS[voice_name], lang='a')
|
| 255 |
-
if isinstance(chunk_audio, torch.Tensor):
|
| 256 |
-
chunk_audio = chunk_audio.cpu().numpy()
|
| 257 |
-
audio_chunks.append(chunk_audio)
|
| 258 |
-
|
| 259 |
-
# Concatenate chunks
|
| 260 |
-
if audio_chunks:
|
| 261 |
-
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
| 262 |
-
return (TTS_SAMPLE_RATE, final_audio)
|
| 263 |
-
|
| 264 |
-
return None
|
| 265 |
|
| 266 |
except Exception as e:
|
|
|
|
| 267 |
print(f"Error generating speech: {str(e)}")
|
|
|
|
| 268 |
return None
|
| 269 |
|
| 270 |
-
#
|
| 271 |
-
|
| 272 |
-
"""
|
| 273 |
-
|
| 274 |
-
return await loop.run_in_executor(None, get_web_results, query)
|
| 275 |
-
|
| 276 |
-
async def async_answer_generation(prompt: str) -> str:
|
| 277 |
-
"""Run answer generation in a non-blocking way"""
|
| 278 |
-
loop = asyncio.get_event_loop()
|
| 279 |
-
return await loop.run_in_executor(None, generate_answer, prompt)
|
| 280 |
-
|
| 281 |
-
async def async_speech_generation(text: str, voice_name: str) -> Tuple[int, np.ndarray] | None:
|
| 282 |
-
"""Run speech generation in a non-blocking way"""
|
| 283 |
-
loop = asyncio.get_event_loop()
|
| 284 |
-
return await loop.run_in_executor(None, generate_speech, text, voice_name)
|
| 285 |
-
|
| 286 |
-
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
| 287 |
-
"""Process user query with streaming effect and non-blocking operations"""
|
| 288 |
-
try:
|
| 289 |
-
if history is None:
|
| 290 |
-
history = []
|
| 291 |
-
|
| 292 |
-
# Start the search task
|
| 293 |
-
current_history = history + [[query, "*Searching...*"]]
|
| 294 |
-
|
| 295 |
-
# Yield initial searching state
|
| 296 |
-
yield (
|
| 297 |
-
"*Searching & Thinking...*", # answer_output (Markdown)
|
| 298 |
-
"<div class='searching'>Searching for results...</div>", # sources_output (HTML)
|
| 299 |
-
"Searching...", # search_btn (Button)
|
| 300 |
-
current_history, # chat_history_display (Chatbot)
|
| 301 |
-
None # audio_output (Audio)
|
| 302 |
-
)
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
# Update with the search results obtained
|
| 309 |
yield (
|
| 310 |
-
"
|
| 311 |
-
sources_html, # sources_output
|
| 312 |
-
"Generating answer...", # search_btn
|
| 313 |
-
current_history, # chat_history_display
|
| 314 |
-
None # audio_output
|
| 315 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
None # audio_output
|
| 332 |
-
)
|
| 333 |
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
-
except Exception as e:
|
| 356 |
-
error_message = str(e)
|
| 357 |
-
if "GPU quota" in error_message:
|
| 358 |
-
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 359 |
-
yield (
|
| 360 |
-
f"Error: {error_message}", # answer_output
|
| 361 |
-
"<div class='error'>An error occurred during search</div>", # sources_output
|
| 362 |
-
"Search", # search_btn
|
| 363 |
-
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
| 364 |
-
None # audio_output
|
| 365 |
-
)
|
| 366 |
|
| 367 |
-
# ---
|
| 368 |
css = """
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
}
|
| 373 |
-
#header {
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
}
|
| 382 |
-
#
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
}
|
| 388 |
-
#
|
| 389 |
-
|
| 390 |
-
}
|
| 391 |
-
.
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
}
|
| 398 |
-
.
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
}
|
| 405 |
-
.
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
}
|
| 412 |
-
.
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
}
|
| 416 |
-
.
|
| 417 |
-
|
| 418 |
-
}
|
| 419 |
-
.
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
}
|
| 425 |
-
.
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
}
|
| 429 |
-
.
|
| 430 |
-
|
| 431 |
-
}
|
| 432 |
-
.
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
}
|
| 439 |
-
.
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
}
|
| 448 |
-
.answer-box:
|
| 449 |
-
|
| 450 |
-
}
|
| 451 |
-
.
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
}
|
| 455 |
-
.
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
}
|
| 460 |
-
.
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
}
|
| 466 |
-
.
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
}
|
| 475 |
-
.
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
}
|
| 480 |
-
.
|
| 481 |
-
|
| 482 |
-
margin-right: 12px;
|
| 483 |
-
color: #60a5fa;
|
| 484 |
-
}
|
| 485 |
-
.source-content {
|
| 486 |
-
flex: 1;
|
| 487 |
-
}
|
| 488 |
-
.source-title {
|
| 489 |
-
color: #60a5fa;
|
| 490 |
-
font-weight: 500;
|
| 491 |
-
text-decoration: none;
|
| 492 |
-
display: block;
|
| 493 |
-
margin-bottom: 6px;
|
| 494 |
-
transition: all 0.2s;
|
| 495 |
-
}
|
| 496 |
-
.source-title:hover {
|
| 497 |
-
color: #93c5fd;
|
| 498 |
-
text-decoration: underline;
|
| 499 |
-
}
|
| 500 |
-
.source-date {
|
| 501 |
-
color: #a8a9ab;
|
| 502 |
-
font-size: 0.9em;
|
| 503 |
-
margin-left: 8px;
|
| 504 |
-
}
|
| 505 |
-
.source-snippet {
|
| 506 |
-
color: #e5e7eb;
|
| 507 |
-
font-size: 0.9em;
|
| 508 |
-
line-height: 1.5;
|
| 509 |
-
}
|
| 510 |
-
.chat-history {
|
| 511 |
-
max-height: 400px;
|
| 512 |
-
overflow-y: auto;
|
| 513 |
-
padding: 1rem;
|
| 514 |
-
background: #2c2d30;
|
| 515 |
-
border-radius: 8px;
|
| 516 |
-
margin-top: 1rem;
|
| 517 |
-
scrollbar-width: thin;
|
| 518 |
-
scrollbar-color: #4a4b4e #2c2d30;
|
| 519 |
-
}
|
| 520 |
-
.chat-history::-webkit-scrollbar {
|
| 521 |
-
width: 8px;
|
| 522 |
-
}
|
| 523 |
-
.chat-history::-webkit-scrollbar-track {
|
| 524 |
-
background: #2c2d30;
|
| 525 |
-
}
|
| 526 |
-
.chat-history::-webkit-scrollbar-thumb {
|
| 527 |
-
background-color: #4a4b4e;
|
| 528 |
-
border-radius: 20px;
|
| 529 |
-
}
|
| 530 |
-
.examples-container {
|
| 531 |
-
background: #2c2d30;
|
| 532 |
-
border-radius: 8px;
|
| 533 |
-
padding: 1rem;
|
| 534 |
-
margin-top: 1rem;
|
| 535 |
-
}
|
| 536 |
-
.examples-container button {
|
| 537 |
-
background: #3a3b3e !important;
|
| 538 |
-
border: 1px solid #4a4b4e !important;
|
| 539 |
-
color: #e5e7eb !important;
|
| 540 |
-
transition: all 0.2s;
|
| 541 |
-
margin: 4px !important;
|
| 542 |
-
}
|
| 543 |
-
.examples-container button:hover {
|
| 544 |
-
background: #4a4b4e !important;
|
| 545 |
-
transform: translateY(-1px);
|
| 546 |
-
}
|
| 547 |
-
.markdown-content {
|
| 548 |
-
color: #e5e7eb !important;
|
| 549 |
-
}
|
| 550 |
-
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
| 551 |
-
color: white !important;
|
| 552 |
-
margin-top: 1.2em !important;
|
| 553 |
-
margin-bottom: 0.8em !important;
|
| 554 |
-
}
|
| 555 |
-
.markdown-content h1 {
|
| 556 |
-
font-size: 1.7em !important;
|
| 557 |
-
}
|
| 558 |
-
.markdown-content h2 {
|
| 559 |
-
font-size: 1.5em !important;
|
| 560 |
-
}
|
| 561 |
-
.markdown-content h3 {
|
| 562 |
-
font-size: 1.3em !important;
|
| 563 |
-
}
|
| 564 |
-
.markdown-content a {
|
| 565 |
-
color: #60a5fa !important;
|
| 566 |
-
text-decoration: none !important;
|
| 567 |
-
transition: all 0.2s;
|
| 568 |
-
}
|
| 569 |
-
.markdown-content a:hover {
|
| 570 |
-
color: #93c5fd !important;
|
| 571 |
-
text-decoration: underline !important;
|
| 572 |
-
}
|
| 573 |
-
.markdown-content code {
|
| 574 |
-
background: #2c2d30 !important;
|
| 575 |
-
padding: 2px 6px !important;
|
| 576 |
-
border-radius: 4px !important;
|
| 577 |
-
font-family: monospace !important;
|
| 578 |
-
}
|
| 579 |
-
.markdown-content pre {
|
| 580 |
-
background: #2c2d30 !important;
|
| 581 |
-
padding: 12px !important;
|
| 582 |
-
border-radius: 8px !important;
|
| 583 |
-
overflow-x: auto !important;
|
| 584 |
-
}
|
| 585 |
-
.markdown-content blockquote {
|
| 586 |
-
border-left: 4px solid #60a5fa !important;
|
| 587 |
-
padding-left: 1em !important;
|
| 588 |
-
margin-left: 0 !important;
|
| 589 |
-
color: #a8a9ab !important;
|
| 590 |
-
}
|
| 591 |
-
.markdown-content table {
|
| 592 |
-
border-collapse: collapse !important;
|
| 593 |
-
width: 100% !important;
|
| 594 |
-
}
|
| 595 |
-
.markdown-content th, .markdown-content td {
|
| 596 |
-
padding: 8px 12px !important;
|
| 597 |
-
border: 1px solid #4a4b4e !important;
|
| 598 |
-
}
|
| 599 |
-
.markdown-content th {
|
| 600 |
-
background: #2c2d30 !important;
|
| 601 |
-
}
|
| 602 |
-
.accordion {
|
| 603 |
-
background: #2c2d30 !important;
|
| 604 |
-
border-radius: 8px !important;
|
| 605 |
-
margin-top: 1rem !important;
|
| 606 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.1) !important;
|
| 607 |
-
}
|
| 608 |
-
.voice-selector {
|
| 609 |
-
margin-top: 1rem;
|
| 610 |
-
background: #2c2d30;
|
| 611 |
-
border-radius: 8px;
|
| 612 |
-
padding: 0.5rem;
|
| 613 |
-
}
|
| 614 |
-
.voice-selector select {
|
| 615 |
-
background: #3a3b3e !important;
|
| 616 |
-
color: white !important;
|
| 617 |
-
border: 1px solid #4a4b4e !important;
|
| 618 |
-
border-radius: 4px !important;
|
| 619 |
-
padding: 8px !important;
|
| 620 |
-
transition: all 0.2s;
|
| 621 |
-
}
|
| 622 |
-
.voice-selector select:focus {
|
| 623 |
-
border-color: #60a5fa !important;
|
| 624 |
-
}
|
| 625 |
-
.audio-player {
|
| 626 |
-
margin-top: 1rem;
|
| 627 |
-
background: #2c2d30 !important;
|
| 628 |
-
border-radius: 8px !important;
|
| 629 |
-
padding: 0.5rem !important;
|
| 630 |
-
}
|
| 631 |
-
.audio-player audio {
|
| 632 |
-
width: 100% !important;
|
| 633 |
-
}
|
| 634 |
-
.searching, .error {
|
| 635 |
-
padding: 1rem;
|
| 636 |
-
border-radius: 8px;
|
| 637 |
-
text-align: center;
|
| 638 |
-
margin: 1rem 0;
|
| 639 |
-
}
|
| 640 |
-
.searching {
|
| 641 |
-
background: rgba(96, 165, 250, 0.1);
|
| 642 |
-
color: #60a5fa;
|
| 643 |
-
}
|
| 644 |
-
.error {
|
| 645 |
-
background: rgba(239, 68, 68, 0.1);
|
| 646 |
-
color: #ef4444;
|
| 647 |
-
}
|
| 648 |
-
.no-sources {
|
| 649 |
-
padding: 1rem;
|
| 650 |
-
text-align: center;
|
| 651 |
-
color: #a8a9ab;
|
| 652 |
-
background: #2c2d30;
|
| 653 |
-
border-radius: 8px;
|
| 654 |
-
}
|
| 655 |
-
@keyframes pulse {
|
| 656 |
-
0% { opacity: 0.6; }
|
| 657 |
-
50% { opacity: 1; }
|
| 658 |
-
100% { opacity: 0.6; }
|
| 659 |
-
}
|
| 660 |
-
.searching {
|
| 661 |
-
animation: pulse 1.5s infinite;
|
| 662 |
-
}
|
| 663 |
"""
|
| 664 |
|
| 665 |
-
|
| 666 |
-
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
| 667 |
chat_history = gr.State([])
|
| 668 |
-
|
| 669 |
-
with gr.Column(
|
| 670 |
-
gr.
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
with gr.
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
with gr.
|
| 699 |
-
with gr.Column(
|
| 700 |
-
gr.
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 713 |
)
|
| 714 |
|
| 715 |
-
# Handle voice selection mapping
|
| 716 |
-
def get_voice_id(voice_name):
|
| 717 |
-
return VOICE_CHOICES.get(voice_name, 'af')
|
| 718 |
|
| 719 |
-
#
|
| 720 |
search_btn.click(
|
| 721 |
-
fn=
|
| 722 |
-
inputs=[search_input, chat_history,
|
| 723 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 724 |
)
|
| 725 |
-
|
| 726 |
-
# Also trigger search on Enter key
|
| 727 |
search_input.submit(
|
| 728 |
-
fn=
|
| 729 |
-
inputs=[search_input, chat_history,
|
| 730 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 731 |
)
|
| 732 |
|
| 733 |
if __name__ == "__main__":
|
| 734 |
-
#
|
| 735 |
-
demo.queue(
|
|
|
|
| 13 |
import asyncio
|
| 14 |
import threading
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
+
import warnings
|
| 17 |
+
|
| 18 |
+
# Suppress specific warnings if needed (optional)
|
| 19 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
| 20 |
|
| 21 |
# --- Configuration ---
|
| 22 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 23 |
MAX_SEARCH_RESULTS = 5
|
| 24 |
TTS_SAMPLE_RATE = 24000
|
| 25 |
+
MAX_TTS_CHARS = 1000 # Reduced for faster testing, adjust as needed
|
| 26 |
+
GPU_DURATION = 60 # Increased duration for longer tasks like TTS
|
| 27 |
MAX_NEW_TOKENS = 256
|
| 28 |
TEMPERATURE = 0.7
|
| 29 |
TOP_P = 0.95
|
|
|
|
| 34 |
print("Loading tokenizer...")
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 36 |
tokenizer.pad_token = tokenizer.eos_token
|
| 37 |
+
|
| 38 |
print("Loading model...")
|
| 39 |
+
# Determine device map based on CUDA availability
|
| 40 |
+
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
|
| 41 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU
|
| 42 |
+
|
| 43 |
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
MODEL_NAME,
|
| 45 |
+
device_map=device_map,
|
| 46 |
+
# offload_folder="offload", # Only use offload if really needed and configured
|
| 47 |
low_cpu_mem_usage=True,
|
| 48 |
+
torch_dtype=torch_dtype
|
| 49 |
)
|
| 50 |
+
print(f"Model loaded on device map: {model.hf_device_map}")
|
| 51 |
print("Model and tokenizer loaded successfully")
|
| 52 |
except Exception as e:
|
| 53 |
print(f"Error initializing model: {str(e)}")
|
| 54 |
+
# If running in Spaces, maybe try loading to CPU as fallback?
|
| 55 |
+
# For now, just raise the error.
|
| 56 |
raise
|
| 57 |
|
| 58 |
# --- TTS Setup ---
|
|
|
|
| 65 |
TTS_ENABLED = False
|
| 66 |
TTS_MODEL = None
|
| 67 |
VOICEPACKS = {} # Cache voice packs
|
| 68 |
+
KOKORO_PATH = 'Kokoro-82M'
|
| 69 |
|
| 70 |
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
| 71 |
def setup_tts():
|
| 72 |
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
| 73 |
+
|
| 74 |
try:
|
| 75 |
+
# Check if Kokoro already exists
|
| 76 |
+
if not os.path.exists(KOKORO_PATH):
|
| 77 |
+
print("Cloning Kokoro-82M repository...")
|
| 78 |
+
# Install git-lfs if not present (might need sudo/apt)
|
| 79 |
+
try:
|
| 80 |
+
subprocess.run(['git', 'lfs', 'install'], check=True, capture_output=True)
|
| 81 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err:
|
| 82 |
+
print(f"Warning: git-lfs might not be installed or failed: {lfs_err}. Cloning might be slow or incomplete.")
|
| 83 |
+
|
| 84 |
+
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M']
|
| 85 |
+
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
|
| 86 |
+
print("Kokoro cloned successfully.")
|
| 87 |
+
print(result.stdout)
|
| 88 |
+
# Optionally pull LFS files if needed (sometimes clone doesn't get them all)
|
| 89 |
+
# subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True)
|
| 90 |
+
|
| 91 |
+
else:
|
| 92 |
+
print("Kokoro-82M directory already exists.")
|
| 93 |
+
|
| 94 |
+
# Install espeak (essential for phonemization)
|
| 95 |
+
print("Attempting to install espeak-ng or espeak...")
|
| 96 |
try:
|
| 97 |
+
# Try installing espeak-ng first (often preferred)
|
| 98 |
+
subprocess.run(['sudo', 'apt-get', 'update'], check=True, capture_output=True)
|
| 99 |
+
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak-ng'], check=True, capture_output=True)
|
| 100 |
+
print("espeak-ng installed successfully.")
|
| 101 |
+
except (FileNotFoundError, subprocess.CalledProcessError):
|
| 102 |
+
print("espeak-ng installation failed, trying espeak...")
|
| 103 |
try:
|
| 104 |
+
# Fallback to espeak
|
| 105 |
+
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak'], check=True, capture_output=True)
|
| 106 |
+
print("espeak installed successfully.")
|
| 107 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as espeak_err:
|
| 108 |
+
print(f"Warning: Could not install espeak-ng or espeak: {espeak_err}. TTS functionality will be disabled.")
|
| 109 |
+
return # Cannot proceed without espeak
|
| 110 |
+
|
| 111 |
# Set up Kokoro TTS
|
| 112 |
+
if os.path.exists(KOKORO_PATH):
|
| 113 |
import sys
|
| 114 |
+
if KOKORO_PATH not in sys.path:
|
| 115 |
+
sys.path.append(KOKORO_PATH)
|
| 116 |
+
try:
|
| 117 |
+
from models import build_model
|
| 118 |
+
from kokoro import generate as generate_tts_internal # Avoid name clash
|
| 119 |
+
|
| 120 |
+
# Make these functions accessible globally if needed, but better to keep scoped
|
| 121 |
+
globals()['build_model'] = build_model
|
| 122 |
+
globals()['generate_tts_internal'] = generate_tts_internal
|
| 123 |
+
|
| 124 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 125 |
+
print(f"Loading TTS model onto device: {device}")
|
| 126 |
+
# Ensure model path is correct
|
| 127 |
+
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
| 128 |
+
if not os.path.exists(model_file):
|
| 129 |
+
print(f"Error: TTS model file not found at {model_file}")
|
| 130 |
+
# Attempt to pull LFS files again
|
| 131 |
+
try:
|
| 132 |
+
print("Attempting git lfs pull...")
|
| 133 |
+
subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True, capture_output=True)
|
| 134 |
+
if not os.path.exists(model_file):
|
| 135 |
+
print(f"Error: TTS model file STILL not found at {model_file} after lfs pull.")
|
| 136 |
+
return
|
| 137 |
+
except Exception as lfs_pull_err:
|
| 138 |
+
print(f"Error during git lfs pull: {lfs_pull_err}")
|
| 139 |
+
return
|
| 140 |
+
|
| 141 |
+
TTS_MODEL = build_model(model_file, device)
|
| 142 |
+
|
| 143 |
+
# Preload default voice
|
| 144 |
+
default_voice_id = 'af'
|
| 145 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt')
|
| 146 |
+
if os.path.exists(voice_file_path):
|
| 147 |
+
print(f"Loading default voice: {default_voice_id}")
|
| 148 |
+
VOICEPACKS[default_voice_id] = torch.load(voice_file_path,
|
| 149 |
+
map_location=device) # Removed weights_only=True
|
| 150 |
+
else:
|
| 151 |
+
print(f"Warning: Default voice file {voice_file_path} not found.")
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# Preload other common voices to reduce latency
|
| 155 |
+
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 156 |
+
if voice_id != default_voice_id: # Avoid reloading default
|
| 157 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
| 158 |
+
if os.path.exists(voice_file_path):
|
| 159 |
+
try:
|
| 160 |
+
print(f"Preloading voice: {voice_id}")
|
| 161 |
+
VOICEPACKS[voice_id] = torch.load(voice_file_path,
|
| 162 |
+
map_location=device) # Removed weights_only=True
|
| 163 |
+
except Exception as e:
|
| 164 |
+
print(f"Warning: Could not preload voice {voice_id}: {str(e)}")
|
| 165 |
+
else:
|
| 166 |
+
print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, will skip preloading.")
|
| 167 |
+
|
| 168 |
+
TTS_ENABLED = True
|
| 169 |
+
print("TTS setup completed successfully")
|
| 170 |
+
except ImportError as ie:
|
| 171 |
+
print(f"Error importing Kokoro modules: {ie}. Check if Kokoro-82M is correctly cloned and in sys.path.")
|
| 172 |
+
except Exception as model_load_err:
|
| 173 |
+
print(f"Error loading TTS model or voices: {model_load_err}")
|
| 174 |
+
|
| 175 |
else:
|
| 176 |
+
print(f"Warning: {KOKORO_PATH} directory not found after clone attempt. TTS disabled.")
|
| 177 |
+
except subprocess.CalledProcessError as spe:
|
| 178 |
+
print(f"Warning: A subprocess command failed during TTS setup: {spe}")
|
| 179 |
+
print(f"Command: {' '.join(spe.cmd)}")
|
| 180 |
+
print(f"Stderr: {spe.stderr}")
|
| 181 |
+
print("TTS may be disabled.")
|
| 182 |
except Exception as e:
|
| 183 |
+
print(f"Warning: An unexpected error occurred during TTS setup: {str(e)}")
|
| 184 |
TTS_ENABLED = False
|
| 185 |
|
| 186 |
# Start TTS setup in a separate thread
|
| 187 |
+
print("Starting TTS setup in background thread...")
|
| 188 |
+
tts_thread = threading.Thread(target=setup_tts, daemon=True)
|
| 189 |
+
tts_thread.start()
|
| 190 |
|
| 191 |
# --- Search and Generation Functions ---
|
| 192 |
@lru_cache(maxsize=128)
|
| 193 |
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
| 194 |
"""Get web search results using DuckDuckGo with caching for improved performance"""
|
| 195 |
+
print(f"Performing web search for: '{query}'")
|
| 196 |
try:
|
| 197 |
with DDGS() as ddgs:
|
| 198 |
+
# Using safe='off' potentially gives more results but use cautiously
|
| 199 |
+
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate'))
|
| 200 |
+
print(f"Found {len(results)} results.")
|
| 201 |
+
formatted_results = []
|
| 202 |
+
for result in results:
|
| 203 |
+
formatted_results.append({
|
| 204 |
+
"title": result.get("title", "No Title"),
|
| 205 |
+
"snippet": result.get("body", "No Snippet Available"),
|
| 206 |
+
"url": result.get("href", "#"),
|
| 207 |
+
# Attempt to extract date - DDGS doesn't reliably provide it
|
| 208 |
+
# "date": result.get("published", "") # Placeholder
|
| 209 |
+
})
|
| 210 |
+
return formatted_results
|
| 211 |
except Exception as e:
|
| 212 |
print(f"Error in web search: {e}")
|
| 213 |
return []
|
|
|
|
| 215 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
| 216 |
"""Format the prompt with web context"""
|
| 217 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 218 |
+
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for i, res in enumerate(context)]) # No need for index here
|
| 219 |
+
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
|
| 220 |
+
Do not add information not present in the context.
|
| 221 |
+
Cite the sources used in your answer using bracket notation, e.g., [Source Title]. Use the titles from the context.
|
| 222 |
+
If the context does not contain relevant information to answer the query, state that clearly.
|
| 223 |
Current Time: {current_time}
|
| 224 |
+
|
|
|
|
| 225 |
Web Context:
|
| 226 |
+
{context_lines if context else "No web context available."}
|
| 227 |
+
|
| 228 |
+
User Query: {query}
|
| 229 |
+
|
| 230 |
Answer:"""
|
| 231 |
+
# print(f"Formatted Prompt:\n{prompt}") # Debugging
|
| 232 |
+
return prompt
|
| 233 |
|
| 234 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
| 235 |
"""Format sources with more details"""
|
| 236 |
if not web_results:
|
| 237 |
+
return "<div class='no-sources'>No sources found for the query.</div>"
|
| 238 |
|
| 239 |
sources_html = "<div class='sources-container'>"
|
| 240 |
for i, res in enumerate(web_results, 1):
|
| 241 |
+
title = res.get("title", "Source")
|
| 242 |
+
url = res.get("url", "#")
|
| 243 |
+
# date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else "" # DDG date is unreliable
|
| 244 |
+
snippet = res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")
|
| 245 |
sources_html += f"""
|
| 246 |
<div class='source-item'>
|
| 247 |
<div class='source-number'>[{i}]</div>
|
| 248 |
<div class='source-content'>
|
| 249 |
+
<a href="{url}" target="_blank" class='source-title' title="{url}">{title}</a>
|
|
|
|
| 250 |
<div class='source-snippet'>{snippet}</div>
|
| 251 |
</div>
|
| 252 |
</div>
|
|
|
|
| 254 |
sources_html += "</div>"
|
| 255 |
return sources_html
|
| 256 |
|
| 257 |
+
# Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks
|
| 258 |
+
# Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources
|
| 259 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
| 260 |
+
|
| 261 |
+
@spaces.GPU(duration=GPU_DURATION, cancellable=True)
|
| 262 |
+
async def generate_answer(prompt: str) -> str:
|
| 263 |
+
"""Generate answer using the DeepSeek model with optimized settings (Async Wrapper)"""
|
| 264 |
+
print("Generating answer...")
|
| 265 |
+
try:
|
| 266 |
+
inputs = tokenizer(
|
| 267 |
+
prompt,
|
| 268 |
+
return_tensors="pt",
|
| 269 |
+
padding=True,
|
| 270 |
+
truncation=True,
|
| 271 |
+
max_length=1024, # Increased context length
|
| 272 |
+
return_attention_mask=True
|
| 273 |
+
).to(model.device)
|
| 274 |
+
|
| 275 |
+
# Ensure generation runs on the correct device
|
| 276 |
+
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available() and torch_dtype == torch.float16):
|
| 277 |
+
outputs = await asyncio.to_thread( # Use asyncio.to_thread for potentially blocking calls
|
| 278 |
+
model.generate,
|
| 279 |
+
inputs.input_ids,
|
| 280 |
+
attention_mask=inputs.attention_mask,
|
| 281 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 282 |
+
temperature=TEMPERATURE,
|
| 283 |
+
top_p=TOP_P,
|
| 284 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 285 |
+
do_sample=True,
|
| 286 |
+
early_stopping=True,
|
| 287 |
+
num_return_sequences=1
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Decode output
|
| 291 |
+
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 292 |
+
# Extract only the generated part after "Answer:"
|
| 293 |
+
answer_part = full_output.split("Answer:")[-1].strip()
|
| 294 |
+
print(f"Generated Answer Raw Length: {len(outputs[0])}, Decoded Answer Part Length: {len(answer_part)}")
|
| 295 |
+
if not answer_part: # Handle cases where split might fail or answer is empty
|
| 296 |
+
print("Warning: Could not extract answer after 'Answer:'. Returning full output.")
|
| 297 |
+
return full_output # Fallback
|
| 298 |
+
return answer_part
|
| 299 |
+
except Exception as e:
|
| 300 |
+
print(f"Error during answer generation: {e}")
|
| 301 |
+
# You might want to return a specific error message here
|
| 302 |
+
return f"Error generating answer: {str(e)}"
|
| 303 |
+
|
| 304 |
+
# Ensure this function runs potentially long tasks in a thread using the executor
|
| 305 |
+
# @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily
|
| 306 |
+
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
|
| 307 |
+
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
|
| 308 |
+
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
|
| 309 |
+
print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'")
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
if not TTS_ENABLED or TTS_MODEL is None:
|
| 312 |
+
print("TTS is not enabled or model not loaded.")
|
| 313 |
+
return None
|
| 314 |
+
if 'generate_tts_internal' not in globals():
|
| 315 |
+
print("TTS generation function 'generate_tts_internal' not found.")
|
| 316 |
return None
|
| 317 |
|
| 318 |
try:
|
| 319 |
+
device = TTS_MODEL.device # Get device from the loaded TTS model
|
| 320 |
+
|
| 321 |
+
# Load voicepack if needed (handle potential errors)
|
| 322 |
+
if voice_id not in VOICEPACKS:
|
| 323 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
| 324 |
+
if os.path.exists(voice_file_path):
|
| 325 |
+
print(f"Loading voice '{voice_id}' on demand...")
|
| 326 |
+
try:
|
| 327 |
+
VOICEPACKS[voice_id] = await asyncio.to_thread(
|
| 328 |
+
torch.load, voice_file_path, map_location=device # Removed weights_only=True
|
| 329 |
+
)
|
| 330 |
+
except Exception as load_err:
|
| 331 |
+
print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.")
|
| 332 |
+
voice_id = 'af' # Fallback to default
|
| 333 |
+
# Ensure default is loaded if fallback occurs
|
| 334 |
+
if 'af' not in VOICEPACKS:
|
| 335 |
+
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
| 336 |
+
if os.path.exists(default_voice_file):
|
| 337 |
+
VOICEPACKS['af'] = await asyncio.to_thread(
|
| 338 |
+
torch.load, default_voice_file, map_location=device
|
| 339 |
+
)
|
| 340 |
+
else:
|
| 341 |
+
print("Default voice 'af' also not found. Cannot generate audio.")
|
| 342 |
+
return None
|
| 343 |
else:
|
| 344 |
+
print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.")
|
| 345 |
+
voice_id = 'af' # Fallback to default
|
| 346 |
+
if 'af' not in VOICEPACKS: # Check again if default is needed now
|
| 347 |
+
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
| 348 |
+
if os.path.exists(default_voice_file):
|
| 349 |
+
VOICEPACKS['af'] = await asyncio.to_thread(
|
| 350 |
+
torch.load, default_voice_file, map_location=device
|
| 351 |
+
)
|
| 352 |
+
else:
|
| 353 |
+
print("Default voice 'af' also not found. Cannot generate audio.")
|
| 354 |
+
return None
|
| 355 |
+
|
| 356 |
+
if voice_id not in VOICEPACKS:
|
| 357 |
+
print(f"Error: Voice '{voice_id}' could not be loaded.")
|
| 358 |
+
return None
|
| 359 |
+
|
| 360 |
+
# Clean the text (simple cleaning)
|
| 361 |
+
clean_text = ' '.join(text.split()) # Remove extra whitespace
|
| 362 |
+
clean_text = clean_text.replace('*', '').replace('[', '').replace(']', '') # Remove markdown chars
|
| 363 |
+
|
| 364 |
+
# Ensure text isn't empty
|
| 365 |
+
if not clean_text.strip():
|
| 366 |
+
print("Warning: Empty text provided for TTS.")
|
| 367 |
+
return None
|
| 368 |
+
|
| 369 |
+
# Limit text length
|
| 370 |
+
if len(clean_text) > MAX_TTS_CHARS:
|
| 371 |
+
print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.")
|
| 372 |
+
# Simple truncation, could be smarter (split by sentence)
|
| 373 |
+
clean_text = clean_text[:MAX_TTS_CHARS]
|
| 374 |
+
last_space = clean_text.rfind(' ')
|
| 375 |
+
if last_space != -1:
|
| 376 |
+
clean_text = clean_text[:last_space] + "..." # Truncate at last space
|
| 377 |
+
|
| 378 |
+
# Run the potentially blocking TTS generation in a thread
|
| 379 |
+
print(f"Generating audio for: '{clean_text[:100]}...'")
|
| 380 |
+
gen_func = globals()['generate_tts_internal']
|
| 381 |
+
loop = asyncio.get_event_loop()
|
| 382 |
+
audio_data, _ = await loop.run_in_executor(
|
| 383 |
+
executor, # Use the thread pool executor
|
| 384 |
+
gen_func,
|
| 385 |
+
TTS_MODEL,
|
| 386 |
+
clean_text,
|
| 387 |
+
VOICEPACKS[voice_id],
|
| 388 |
+
'a' # Language code (assuming 'a' is appropriate)
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
if isinstance(audio_data, torch.Tensor):
|
| 392 |
+
# Move tensor to CPU before converting to numpy if it's not already
|
| 393 |
+
audio_np = audio_data.cpu().numpy()
|
| 394 |
+
elif isinstance(audio_data, np.ndarray):
|
| 395 |
+
audio_np = audio_data
|
| 396 |
else:
|
| 397 |
+
print("Warning: Unexpected audio data type from TTS.")
|
| 398 |
+
return None
|
| 399 |
+
|
| 400 |
+
print(f"Audio generated successfully, shape: {audio_np.shape}")
|
| 401 |
+
return (TTS_SAMPLE_RATE, audio_np)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
except Exception as e:
|
| 404 |
+
import traceback
|
| 405 |
print(f"Error generating speech: {str(e)}")
|
| 406 |
+
print(traceback.format_exc()) # Print full traceback for debugging
|
| 407 |
return None
|
| 408 |
|
| 409 |
+
# Helper to get voice ID from display name
|
| 410 |
+
def get_voice_id(voice_display_name: str) -> str:
|
| 411 |
+
"""Maps the user-friendly voice name to the internal voice ID."""
|
| 412 |
+
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
+
# --- Main Processing Logic (Async) ---
|
| 415 |
+
async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str):
|
| 416 |
+
"""Asynchronously process user query: search -> generate answer -> generate speech"""
|
| 417 |
+
if not query:
|
|
|
|
| 418 |
yield (
|
| 419 |
+
"Please enter a query.", "", "Search", history, None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
)
|
| 421 |
+
return
|
| 422 |
+
|
| 423 |
+
if history is None: history = []
|
| 424 |
+
current_history = history + [[query, "*Searching...*"]]
|
| 425 |
+
|
| 426 |
+
# 1. Initial state: Searching
|
| 427 |
+
yield (
|
| 428 |
+
"*Searching & Thinking...*",
|
| 429 |
+
"<div class='searching'>Searching the web...</div>",
|
| 430 |
+
gr.Button(value="Searching...", interactive=False), # Disable button
|
| 431 |
+
current_history,
|
| 432 |
+
None
|
| 433 |
+
)
|
| 434 |
|
| 435 |
+
# 2. Perform Web Search (non-blocking)
|
| 436 |
+
loop = asyncio.get_event_loop()
|
| 437 |
+
web_results = await loop.run_in_executor(executor, get_web_results, query)
|
| 438 |
+
sources_html = format_sources(web_results)
|
| 439 |
+
|
| 440 |
+
# Update state: Analyzing results
|
| 441 |
+
current_history[-1][1] = "*Analyzing search results...*"
|
| 442 |
+
yield (
|
| 443 |
+
"*Analyzing search results...*",
|
| 444 |
+
sources_html,
|
| 445 |
+
gr.Button(value="Generating...", interactive=False),
|
| 446 |
+
current_history,
|
| 447 |
+
None
|
| 448 |
+
)
|
|
|
|
|
|
|
| 449 |
|
| 450 |
+
# 3. Generate Answer (non-blocking, potentially on GPU)
|
| 451 |
+
prompt = format_prompt(query, web_results)
|
| 452 |
+
final_answer = await generate_answer(prompt) # Already async
|
| 453 |
+
|
| 454 |
+
# Update state: Answer generated
|
| 455 |
+
current_history[-1][1] = final_answer
|
| 456 |
+
yield (
|
| 457 |
+
final_answer,
|
| 458 |
+
sources_html,
|
| 459 |
+
gr.Button(value="Audio...", interactive=False),
|
| 460 |
+
current_history,
|
| 461 |
+
None
|
| 462 |
+
)
|
| 463 |
|
| 464 |
+
# 4. Generate Speech (non-blocking, potentially on GPU)
|
| 465 |
+
audio = None
|
| 466 |
+
tts_message = ""
|
| 467 |
+
if not tts_thread.is_alive() and not TTS_ENABLED:
|
| 468 |
+
tts_message = "\n\n*(TTS setup failed or is disabled)*"
|
| 469 |
+
elif tts_thread.is_alive():
|
| 470 |
+
tts_message = "\n\n*(TTS is still initializing, audio may be delayed)*"
|
| 471 |
+
elif TTS_ENABLED:
|
| 472 |
+
voice_id = get_voice_id(selected_voice_display_name)
|
| 473 |
+
audio = await generate_speech(final_answer, voice_id) # Already async
|
| 474 |
+
if audio is None:
|
| 475 |
+
tts_message = f"\n\n*(Audio generation failed for voice '{voice_id}')*"
|
| 476 |
+
|
| 477 |
+
# 5. Final state: Show everything
|
| 478 |
+
yield (
|
| 479 |
+
final_answer + tts_message,
|
| 480 |
+
sources_html,
|
| 481 |
+
gr.Button(value="Search", interactive=True), # Re-enable button
|
| 482 |
+
current_history,
|
| 483 |
+
audio
|
| 484 |
+
)
|
| 485 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
+
# --- Gradio Interface ---
|
| 488 |
css = """
|
| 489 |
+
/* ... [Your existing CSS remains unchanged] ... */
|
| 490 |
+
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
| 491 |
+
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
| 492 |
+
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
| 493 |
+
#header h3 { color: #a8a9ab; }
|
| 494 |
+
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
|
| 495 |
+
.search-box { padding: 0; margin-bottom: 1rem; }
|
| 496 |
+
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; } /* Style textbox specifically */
|
| 497 |
+
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;} /* Style dropdown */
|
| 498 |
+
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; } /* Style button */
|
| 499 |
+
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 42px !important; }
|
| 500 |
+
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; }
|
| 501 |
+
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
| 502 |
+
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 44px !important; }
|
| 503 |
+
.search-box button:hover { background: #1d4ed8 !important; }
|
| 504 |
+
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
| 505 |
+
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
| 506 |
+
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); }
|
| 507 |
+
.answer-box p { color: #374151; line-height: 1.7; }
|
| 508 |
+
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
| 509 |
+
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
| 510 |
+
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
| 511 |
+
.sources-container { margin-top: 0; }
|
| 512 |
+
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
|
| 513 |
+
.source-item:last-child { border-bottom: none; }
|
| 514 |
+
/* .source-item:hover { background-color: #f9fafb; } */
|
| 515 |
+
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
| 516 |
+
.source-content { flex: 1; }
|
| 517 |
+
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; }
|
| 518 |
+
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
| 519 |
+
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
|
| 520 |
+
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 521 |
+
.chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
| 522 |
+
.chat-history::-webkit-scrollbar { width: 6px; }
|
| 523 |
+
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 524 |
+
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 525 |
+
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
| 526 |
+
.examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */
|
| 527 |
+
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; }
|
| 528 |
+
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 529 |
+
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
| 530 |
+
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
|
| 531 |
+
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
|
| 532 |
+
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
|
| 533 |
+
.markdown-content h3 { font-size: 1.2em !important; }
|
| 534 |
+
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
|
| 535 |
+
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
|
| 536 |
+
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
|
| 537 |
+
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
|
| 538 |
+
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
|
| 539 |
+
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
|
| 540 |
+
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
| 541 |
+
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
| 542 |
+
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
| 543 |
+
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
| 544 |
+
.accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */
|
| 545 |
+
.voice-selector { margin: 0; padding: 0; }
|
| 546 |
+
.voice-selector div[data-testid="dropdown"] { /* Target the specific dropdown container */ height: 44px !important; }
|
| 547 |
+
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
| 548 |
+
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; }
|
| 549 |
+
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
| 550 |
+
.audio-player audio { width: 100% !important; }
|
| 551 |
+
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
|
| 552 |
+
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
|
| 553 |
+
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
|
| 554 |
+
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 555 |
+
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 556 |
+
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Add span for animation */
|
| 557 |
+
.dark .gradio-container { background-color: #111827 !important; }
|
| 558 |
+
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
| 559 |
+
.dark #header h3 { color: #9ca3af; }
|
| 560 |
+
.dark .search-container { background: #1f2937; border-color: #374151; }
|
| 561 |
+
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
|
| 562 |
+
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
|
| 563 |
+
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
| 564 |
+
.dark .search-box button { background: #3b82f6 !important; }
|
| 565 |
+
.dark .search-box button:hover { background: #2563eb !important; }
|
| 566 |
+
.dark .search-box button:disabled { background: #4b5563 !important; }
|
| 567 |
+
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
|
| 568 |
+
.dark .answer-box p { color: #d1d5db; }
|
| 569 |
+
.dark .answer-box code { background: #374151; color: #9ca3af; }
|
| 570 |
+
.dark .sources-box { background: #1f2937; border-color: #374151; }
|
| 571 |
+
.dark .sources-box h3 { color: #f9fafb; }
|
| 572 |
+
.dark .source-item { border-bottom-color: #374151; }
|
| 573 |
+
.dark .source-item:hover { background-color: #374151; }
|
| 574 |
+
.dark .source-number { color: #9ca3af; }
|
| 575 |
+
.dark .source-title { color: #60a5fa; }
|
| 576 |
+
.dark .source-title:hover { color: #93c5fd; }
|
| 577 |
+
.dark .source-snippet { color: #d1d5db; }
|
| 578 |
+
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; }
|
| 579 |
+
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
| 580 |
+
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
| 581 |
+
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
| 582 |
+
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
|
| 583 |
+
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
|
| 584 |
+
.dark .markdown-content { color: #d1d5db !important; }
|
| 585 |
+
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
|
| 586 |
+
.dark .markdown-content a { color: #60a5fa !important; }
|
| 587 |
+
.dark .markdown-content a:hover { color: #93c5fd !important; }
|
| 588 |
+
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
|
| 589 |
+
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
|
| 590 |
+
.dark .markdown-content pre code { background: transparent !important; }
|
| 591 |
+
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
| 592 |
+
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
| 593 |
+
.dark .markdown-content th { background: #374151 !important; }
|
| 594 |
+
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
| 595 |
+
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
| 596 |
+
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
| 597 |
+
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
| 598 |
+
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
|
| 599 |
+
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
|
| 600 |
+
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
| 601 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 602 |
"""
|
| 603 |
|
| 604 |
+
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
|
|
|
| 605 |
chat_history = gr.State([])
|
| 606 |
+
|
| 607 |
+
with gr.Column(): # Main container
|
| 608 |
+
with gr.Column(elem_id="header"):
|
| 609 |
+
gr.Markdown("# 🔍 AI Search Assistant")
|
| 610 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
| 611 |
+
|
| 612 |
+
with gr.Column(elem_classes="search-container"):
|
| 613 |
+
with gr.Row(elem_classes="search-box", equal_height=True):
|
| 614 |
+
search_input = gr.Textbox(
|
| 615 |
+
label="",
|
| 616 |
+
placeholder="Ask anything...",
|
| 617 |
+
scale=5,
|
| 618 |
+
container=False, # Important for direct styling
|
| 619 |
+
elem_classes="gradio-textbox"
|
| 620 |
+
)
|
| 621 |
+
voice_select = gr.Dropdown(
|
| 622 |
+
choices=list(VOICE_CHOICES.keys()),
|
| 623 |
+
value=list(VOICE_CHOICES.keys())[0],
|
| 624 |
+
label="", # No label needed here
|
| 625 |
+
scale=2,
|
| 626 |
+
container=False, # Important
|
| 627 |
+
elem_classes="voice-selector gradio-dropdown"
|
| 628 |
+
)
|
| 629 |
+
search_btn = gr.Button(
|
| 630 |
+
"Search",
|
| 631 |
+
variant="primary",
|
| 632 |
+
scale=1,
|
| 633 |
+
elem_classes="gradio-button"
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
with gr.Row(elem_classes="results-container", equal_height=False):
|
| 637 |
+
with gr.Column(scale=3): # Wider column for answer + history
|
| 638 |
+
with gr.Column(elem_classes="answer-box"):
|
| 639 |
+
answer_output = gr.Markdown(elem_classes="markdown-content", value="*Your answer will appear here...*")
|
| 640 |
+
# Audio player below the answer
|
| 641 |
+
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player", type="numpy") # Expect numpy array
|
| 642 |
+
|
| 643 |
+
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
| 644 |
+
chat_history_display = gr.Chatbot(elem_classes="chat-history", label="History", height=300)
|
| 645 |
+
|
| 646 |
+
with gr.Column(scale=2): # Narrower column for sources
|
| 647 |
+
with gr.Column(elem_classes="sources-box"):
|
| 648 |
+
gr.Markdown("### Sources")
|
| 649 |
+
sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>")
|
| 650 |
+
|
| 651 |
+
with gr.Row(elem_classes="examples-container"):
|
| 652 |
+
gr.Examples(
|
| 653 |
+
examples=[
|
| 654 |
+
"Latest news about renewable energy",
|
| 655 |
+
"Explain the concept of Large Language Models (LLMs)",
|
| 656 |
+
"What are the symptoms and prevention tips for the flu?",
|
| 657 |
+
"Compare Python and JavaScript for web development"
|
| 658 |
+
],
|
| 659 |
+
inputs=search_input,
|
| 660 |
+
label="Try these examples:",
|
| 661 |
+
elem_classes="gradio-examples" # Add class for potential styling
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
# --- Event Handling ---
|
| 665 |
+
# Use the async function for processing
|
| 666 |
+
async def handle_interaction(query, history, voice_display_name):
|
| 667 |
+
"""Wrapper to handle the async generator from process_query_async"""
|
| 668 |
+
try:
|
| 669 |
+
async for update in process_query_async(query, history, voice_display_name):
|
| 670 |
+
# Ensure the button state is updated correctly
|
| 671 |
+
ans_out, src_out, btn_state, hist_display, aud_out = update
|
| 672 |
+
yield ans_out, src_out, btn_state, hist_display, aud_out
|
| 673 |
+
except Exception as e:
|
| 674 |
+
print(f"Error in handle_interaction: {e}")
|
| 675 |
+
import traceback
|
| 676 |
+
traceback.print_exc()
|
| 677 |
+
error_message = f"An unexpected error occurred: {e}"
|
| 678 |
+
# Provide a final error state update
|
| 679 |
+
yield (
|
| 680 |
+
error_message,
|
| 681 |
+
"<div class='error'>Error processing request.</div>",
|
| 682 |
+
gr.Button(value="Search", interactive=True), # Re-enable button on error
|
| 683 |
+
history + [[query, f"*Error: {error_message}*"]],
|
| 684 |
+
None
|
| 685 |
)
|
| 686 |
|
|
|
|
|
|
|
|
|
|
| 687 |
|
| 688 |
+
# Corrected event listeners: Pass the voice_select component directly
|
| 689 |
search_btn.click(
|
| 690 |
+
fn=handle_interaction,
|
| 691 |
+
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
|
| 692 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 693 |
)
|
| 694 |
+
|
|
|
|
| 695 |
search_input.submit(
|
| 696 |
+
fn=handle_interaction,
|
| 697 |
+
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
|
| 698 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 699 |
)
|
| 700 |
|
| 701 |
if __name__ == "__main__":
|
| 702 |
+
# Launch the app
|
| 703 |
+
demo.queue(max_size=20).launch(debug=True, share=True) # Enable debug for more logs
|