Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import spaces | |
| from duckduckgo_search import DDGS | |
| import time | |
| import torch | |
| from datetime import datetime | |
| import os | |
| import subprocess | |
| import numpy as np | |
| from typing import List, Dict, Tuple, Any | |
| from functools import lru_cache | |
| import asyncio | |
| import threading | |
| from concurrent.futures import ThreadPoolExecutor | |
| import warnings | |
| # Suppress specific warnings if needed (optional) | |
| warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") | |
| # --- Configuration --- | |
| MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" | |
| MAX_SEARCH_RESULTS = 5 | |
| TTS_SAMPLE_RATE = 24000 | |
| MAX_TTS_CHARS = 1000 # Reduced for faster testing, adjust as needed | |
| GPU_DURATION = 60 # Increased duration for longer tasks like TTS | |
| MAX_NEW_TOKENS = 256 | |
| TEMPERATURE = 0.7 | |
| TOP_P = 0.95 | |
| # --- Initialization --- | |
| # Initialize model and tokenizer with better error handling | |
| try: | |
| print("Loading tokenizer...") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| print("Loading model...") | |
| # Determine device map based on CUDA availability | |
| device_map = "auto" if torch.cuda.is_available() else {"": "cpu"} | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| device_map=device_map, | |
| # offload_folder="offload", # Only use offload if really needed and configured | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch_dtype | |
| ) | |
| print(f"Model loaded on device map: {model.hf_device_map}") | |
| print("Model and tokenizer loaded successfully") | |
| except Exception as e: | |
| print(f"Error initializing model: {str(e)}") | |
| # If running in Spaces, maybe try loading to CPU as fallback? | |
| # For now, just raise the error. | |
| raise | |
| # --- TTS Setup --- | |
| VOICE_CHOICES = { | |
| 'πΊπΈ Female (Default)': 'af', | |
| 'πΊπΈ Bella': 'af_bella', | |
| 'πΊπΈ Sarah': 'af_sarah', | |
| 'πΊπΈ Nicole': 'af_nicole' | |
| } | |
| TTS_ENABLED = False | |
| TTS_MODEL = None | |
| VOICEPACKS = {} # Cache voice packs | |
| KOKORO_PATH = 'Kokoro-82M' | |
| # Initialize Kokoro TTS in a separate thread to avoid blocking startup | |
| def setup_tts(): | |
| global TTS_ENABLED, TTS_MODEL, VOICEPACKS | |
| try: | |
| # Check if Kokoro already exists | |
| if not os.path.exists(KOKORO_PATH): | |
| print("Cloning Kokoro-82M repository...") | |
| # Install git-lfs if not present (might need sudo/apt) | |
| try: | |
| subprocess.run(['git', 'lfs', 'install'], check=True, capture_output=True) | |
| except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err: | |
| print(f"Warning: git-lfs might not be installed or failed: {lfs_err}. Cloning might be slow or incomplete.") | |
| clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'] | |
| result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True) | |
| print("Kokoro cloned successfully.") | |
| print(result.stdout) | |
| # Optionally pull LFS files if needed (sometimes clone doesn't get them all) | |
| # subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True) | |
| else: | |
| print("Kokoro-82M directory already exists.") | |
| # Install espeak (essential for phonemization) | |
| print("Attempting to install espeak-ng or espeak...") | |
| try: | |
| # Try installing espeak-ng first (often preferred) | |
| subprocess.run(['sudo', 'apt-get', 'update'], check=True, capture_output=True) | |
| subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak-ng'], check=True, capture_output=True) | |
| print("espeak-ng installed successfully.") | |
| except (FileNotFoundError, subprocess.CalledProcessError): | |
| print("espeak-ng installation failed, trying espeak...") | |
| try: | |
| # Fallback to espeak | |
| subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak'], check=True, capture_output=True) | |
| print("espeak installed successfully.") | |
| except (FileNotFoundError, subprocess.CalledProcessError) as espeak_err: | |
| print(f"Warning: Could not install espeak-ng or espeak: {espeak_err}. TTS functionality will be disabled.") | |
| return # Cannot proceed without espeak | |
| # Set up Kokoro TTS | |
| if os.path.exists(KOKORO_PATH): | |
| import sys | |
| if KOKORO_PATH not in sys.path: | |
| sys.path.append(KOKORO_PATH) | |
| try: | |
| from models import build_model | |
| from kokoro import generate as generate_tts_internal # Avoid name clash | |
| # Make these functions accessible globally if needed, but better to keep scoped | |
| globals()['build_model'] = build_model | |
| globals()['generate_tts_internal'] = generate_tts_internal | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| print(f"Loading TTS model onto device: {device}") | |
| # Ensure model path is correct | |
| model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth') | |
| if not os.path.exists(model_file): | |
| print(f"Error: TTS model file not found at {model_file}") | |
| # Attempt to pull LFS files again | |
| try: | |
| print("Attempting git lfs pull...") | |
| subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True, capture_output=True) | |
| if not os.path.exists(model_file): | |
| print(f"Error: TTS model file STILL not found at {model_file} after lfs pull.") | |
| return | |
| except Exception as lfs_pull_err: | |
| print(f"Error during git lfs pull: {lfs_pull_err}") | |
| return | |
| TTS_MODEL = build_model(model_file, device) | |
| # Preload default voice | |
| default_voice_id = 'af' | |
| voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt') | |
| if os.path.exists(voice_file_path): | |
| print(f"Loading default voice: {default_voice_id}") | |
| VOICEPACKS[default_voice_id] = torch.load(voice_file_path, | |
| map_location=device) # Removed weights_only=True | |
| else: | |
| print(f"Warning: Default voice file {voice_file_path} not found.") | |
| # Preload other common voices to reduce latency | |
| for voice_name, voice_id in VOICE_CHOICES.items(): | |
| if voice_id != default_voice_id: # Avoid reloading default | |
| voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt') | |
| if os.path.exists(voice_file_path): | |
| try: | |
| print(f"Preloading voice: {voice_id}") | |
| VOICEPACKS[voice_id] = torch.load(voice_file_path, | |
| map_location=device) # Removed weights_only=True | |
| except Exception as e: | |
| print(f"Warning: Could not preload voice {voice_id}: {str(e)}") | |
| else: | |
| print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, will skip preloading.") | |
| TTS_ENABLED = True | |
| print("TTS setup completed successfully") | |
| except ImportError as ie: | |
| print(f"Error importing Kokoro modules: {ie}. Check if Kokoro-82M is correctly cloned and in sys.path.") | |
| except Exception as model_load_err: | |
| print(f"Error loading TTS model or voices: {model_load_err}") | |
| else: | |
| print(f"Warning: {KOKORO_PATH} directory not found after clone attempt. TTS disabled.") | |
| except subprocess.CalledProcessError as spe: | |
| print(f"Warning: A subprocess command failed during TTS setup: {spe}") | |
| print(f"Command: {' '.join(spe.cmd)}") | |
| print(f"Stderr: {spe.stderr}") | |
| print("TTS may be disabled.") | |
| except Exception as e: | |
| print(f"Warning: An unexpected error occurred during TTS setup: {str(e)}") | |
| TTS_ENABLED = False | |
| # Start TTS setup in a separate thread | |
| print("Starting TTS setup in background thread...") | |
| tts_thread = threading.Thread(target=setup_tts, daemon=True) | |
| tts_thread.start() | |
| # --- Search and Generation Functions --- | |
| def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]: | |
| """Get web search results using DuckDuckGo with caching for improved performance""" | |
| print(f"Performing web search for: '{query}'") | |
| try: | |
| with DDGS() as ddgs: | |
| # Using safe='off' potentially gives more results but use cautiously | |
| results = list(ddgs.text(query, max_results=max_results, safesearch='moderate')) | |
| print(f"Found {len(results)} results.") | |
| formatted_results = [] | |
| for result in results: | |
| formatted_results.append({ | |
| "title": result.get("title", "No Title"), | |
| "snippet": result.get("body", "No Snippet Available"), | |
| "url": result.get("href", "#"), | |
| # Attempt to extract date - DDGS doesn't reliably provide it | |
| # "date": result.get("published", "") # Placeholder | |
| }) | |
| return formatted_results | |
| except Exception as e: | |
| print(f"Error in web search: {e}") | |
| return [] | |
| def format_prompt(query: str, context: List[Dict[str, str]]) -> str: | |
| """Format the prompt with web context""" | |
| current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for i, res in enumerate(context)]) # No need for index here | |
| prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context. | |
| Do not add information not present in the context. | |
| Cite the sources used in your answer using bracket notation, e.g., [Source Title]. Use the titles from the context. | |
| If the context does not contain relevant information to answer the query, state that clearly. | |
| Current Time: {current_time} | |
| Web Context: | |
| {context_lines if context else "No web context available."} | |
| User Query: {query} | |
| Answer:""" | |
| # print(f"Formatted Prompt:\n{prompt}") # Debugging | |
| return prompt | |
| def format_sources(web_results: List[Dict[str, str]]) -> str: | |
| """Format sources with more details""" | |
| if not web_results: | |
| return "<div class='no-sources'>No sources found for the query.</div>" | |
| sources_html = "<div class='sources-container'>" | |
| for i, res in enumerate(web_results, 1): | |
| title = res.get("title", "Source") | |
| url = res.get("url", "#") | |
| # date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else "" # DDG date is unreliable | |
| snippet = res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "") | |
| sources_html += f""" | |
| <div class='source-item'> | |
| <div class='source-number'>[{i}]</div> | |
| <div class='source-content'> | |
| <a href="{url}" target="_blank" class='source-title' title="{url}">{title}</a> | |
| <div class='source-snippet'>{snippet}</div> | |
| </div> | |
| </div> | |
| """ | |
| sources_html += "</div>" | |
| return sources_html | |
| # Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks | |
| # Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources | |
| executor = ThreadPoolExecutor(max_workers=4) | |
| async def generate_answer(prompt: str) -> str: | |
| """Generate answer using the DeepSeek model with optimized settings (Async Wrapper)""" | |
| print("Generating answer...") | |
| try: | |
| inputs = tokenizer( | |
| prompt, | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=True, | |
| max_length=1024, # Increased context length | |
| return_attention_mask=True | |
| ).to(model.device) | |
| # Ensure generation runs on the correct device | |
| with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available() and torch_dtype == torch.float16): | |
| outputs = await asyncio.to_thread( # Use asyncio.to_thread for potentially blocking calls | |
| model.generate, | |
| inputs.input_ids, | |
| attention_mask=inputs.attention_mask, | |
| max_new_tokens=MAX_NEW_TOKENS, | |
| temperature=TEMPERATURE, | |
| top_p=TOP_P, | |
| pad_token_id=tokenizer.eos_token_id, | |
| do_sample=True, | |
| early_stopping=True, | |
| num_return_sequences=1 | |
| ) | |
| # Decode output | |
| full_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract only the generated part after "Answer:" | |
| answer_part = full_output.split("Answer:")[-1].strip() | |
| print(f"Generated Answer Raw Length: {len(outputs[0])}, Decoded Answer Part Length: {len(answer_part)}") | |
| if not answer_part: # Handle cases where split might fail or answer is empty | |
| print("Warning: Could not extract answer after 'Answer:'. Returning full output.") | |
| return full_output # Fallback | |
| return answer_part | |
| except Exception as e: | |
| print(f"Error during answer generation: {e}") | |
| # You might want to return a specific error message here | |
| return f"Error generating answer: {str(e)}" | |
| # Ensure this function runs potentially long tasks in a thread using the executor | |
| # @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily | |
| async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None: | |
| """Generate speech from text using Kokoro TTS model (Async Wrapper).""" | |
| global TTS_MODEL, TTS_ENABLED, VOICEPACKS | |
| print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'") | |
| if not TTS_ENABLED or TTS_MODEL is None: | |
| print("TTS is not enabled or model not loaded.") | |
| return None | |
| if 'generate_tts_internal' not in globals(): | |
| print("TTS generation function 'generate_tts_internal' not found.") | |
| return None | |
| try: | |
| device = TTS_MODEL.device # Get device from the loaded TTS model | |
| # Load voicepack if needed (handle potential errors) | |
| if voice_id not in VOICEPACKS: | |
| voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt') | |
| if os.path.exists(voice_file_path): | |
| print(f"Loading voice '{voice_id}' on demand...") | |
| try: | |
| VOICEPACKS[voice_id] = await asyncio.to_thread( | |
| torch.load, voice_file_path, map_location=device # Removed weights_only=True | |
| ) | |
| except Exception as load_err: | |
| print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.") | |
| voice_id = 'af' # Fallback to default | |
| # Ensure default is loaded if fallback occurs | |
| if 'af' not in VOICEPACKS: | |
| default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt') | |
| if os.path.exists(default_voice_file): | |
| VOICEPACKS['af'] = await asyncio.to_thread( | |
| torch.load, default_voice_file, map_location=device | |
| ) | |
| else: | |
| print("Default voice 'af' also not found. Cannot generate audio.") | |
| return None | |
| else: | |
| print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.") | |
| voice_id = 'af' # Fallback to default | |
| if 'af' not in VOICEPACKS: # Check again if default is needed now | |
| default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt') | |
| if os.path.exists(default_voice_file): | |
| VOICEPACKS['af'] = await asyncio.to_thread( | |
| torch.load, default_voice_file, map_location=device | |
| ) | |
| else: | |
| print("Default voice 'af' also not found. Cannot generate audio.") | |
| return None | |
| if voice_id not in VOICEPACKS: | |
| print(f"Error: Voice '{voice_id}' could not be loaded.") | |
| return None | |
| # Clean the text (simple cleaning) | |
| clean_text = ' '.join(text.split()) # Remove extra whitespace | |
| clean_text = clean_text.replace('*', '').replace('[', '').replace(']', '') # Remove markdown chars | |
| # Ensure text isn't empty | |
| if not clean_text.strip(): | |
| print("Warning: Empty text provided for TTS.") | |
| return None | |
| # Limit text length | |
| if len(clean_text) > MAX_TTS_CHARS: | |
| print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.") | |
| # Simple truncation, could be smarter (split by sentence) | |
| clean_text = clean_text[:MAX_TTS_CHARS] | |
| last_space = clean_text.rfind(' ') | |
| if last_space != -1: | |
| clean_text = clean_text[:last_space] + "..." # Truncate at last space | |
| # Run the potentially blocking TTS generation in a thread | |
| print(f"Generating audio for: '{clean_text[:100]}...'") | |
| gen_func = globals()['generate_tts_internal'] | |
| loop = asyncio.get_event_loop() | |
| audio_data, _ = await loop.run_in_executor( | |
| executor, # Use the thread pool executor | |
| gen_func, | |
| TTS_MODEL, | |
| clean_text, | |
| VOICEPACKS[voice_id], | |
| 'a' # Language code (assuming 'a' is appropriate) | |
| ) | |
| if isinstance(audio_data, torch.Tensor): | |
| # Move tensor to CPU before converting to numpy if it's not already | |
| audio_np = audio_data.cpu().numpy() | |
| elif isinstance(audio_data, np.ndarray): | |
| audio_np = audio_data | |
| else: | |
| print("Warning: Unexpected audio data type from TTS.") | |
| return None | |
| print(f"Audio generated successfully, shape: {audio_np.shape}") | |
| return (TTS_SAMPLE_RATE, audio_np) | |
| except Exception as e: | |
| import traceback | |
| print(f"Error generating speech: {str(e)}") | |
| print(traceback.format_exc()) # Print full traceback for debugging | |
| return None | |
| # Helper to get voice ID from display name | |
| def get_voice_id(voice_display_name: str) -> str: | |
| """Maps the user-friendly voice name to the internal voice ID.""" | |
| return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found | |
| # --- Main Processing Logic (Async) --- | |
| async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str): | |
| """Asynchronously process user query: search -> generate answer -> generate speech""" | |
| if not query: | |
| yield ( | |
| "Please enter a query.", "", "Search", history, None | |
| ) | |
| return | |
| if history is None: history = [] | |
| current_history = history + [[query, "*Searching...*"]] | |
| # 1. Initial state: Searching | |
| yield ( | |
| "*Searching & Thinking...*", | |
| "<div class='searching'>Searching the web...</div>", | |
| gr.Button(value="Searching...", interactive=False), # Disable button | |
| current_history, | |
| None | |
| ) | |
| # 2. Perform Web Search (non-blocking) | |
| loop = asyncio.get_event_loop() | |
| web_results = await loop.run_in_executor(executor, get_web_results, query) | |
| sources_html = format_sources(web_results) | |
| # Update state: Analyzing results | |
| current_history[-1][1] = "*Analyzing search results...*" | |
| yield ( | |
| "*Analyzing search results...*", | |
| sources_html, | |
| gr.Button(value="Generating...", interactive=False), | |
| current_history, | |
| None | |
| ) | |
| # 3. Generate Answer (non-blocking, potentially on GPU) | |
| prompt = format_prompt(query, web_results) | |
| final_answer = await generate_answer(prompt) # Already async | |
| # Update state: Answer generated | |
| current_history[-1][1] = final_answer | |
| yield ( | |
| final_answer, | |
| sources_html, | |
| gr.Button(value="Audio...", interactive=False), | |
| current_history, | |
| None | |
| ) | |
| # 4. Generate Speech (non-blocking, potentially on GPU) | |
| audio = None | |
| tts_message = "" | |
| if not tts_thread.is_alive() and not TTS_ENABLED: | |
| tts_message = "\n\n*(TTS setup failed or is disabled)*" | |
| elif tts_thread.is_alive(): | |
| tts_message = "\n\n*(TTS is still initializing, audio may be delayed)*" | |
| elif TTS_ENABLED: | |
| voice_id = get_voice_id(selected_voice_display_name) | |
| audio = await generate_speech(final_answer, voice_id) # Already async | |
| if audio is None: | |
| tts_message = f"\n\n*(Audio generation failed for voice '{voice_id}')*" | |
| # 5. Final state: Show everything | |
| yield ( | |
| final_answer + tts_message, | |
| sources_html, | |
| gr.Button(value="Search", interactive=True), # Re-enable button | |
| current_history, | |
| audio | |
| ) | |
| # --- Gradio Interface --- | |
| css = """ | |
| /* ... [Your existing CSS remains unchanged] ... */ | |
| .gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } | |
| #header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } | |
| #header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } | |
| #header h3 { color: #a8a9ab; } | |
| .search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } | |
| .search-box { padding: 0; margin-bottom: 1rem; } | |
| .search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; } /* Style textbox specifically */ | |
| .search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;} /* Style dropdown */ | |
| .search-box .gradio-button { border-radius: 0 8px 8px 0 !important; } /* Style button */ | |
| .search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 42px !important; } | |
| .search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; } | |
| .search-box input[type="text"]::placeholder { color: #9ca3af !important; } | |
| .search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 44px !important; } | |
| .search-box button:hover { background: #1d4ed8 !important; } | |
| .search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } | |
| .results-container { background: transparent; padding: 0; margin-top: 1.5rem; } | |
| .answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); } | |
| .answer-box p { color: #374151; line-height: 1.7; } | |
| .answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } | |
| .sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } | |
| .sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } | |
| .sources-container { margin-top: 0; } | |
| .source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; } | |
| .source-item:last-child { border-bottom: none; } | |
| /* .source-item:hover { background-color: #f9fafb; } */ | |
| .source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} | |
| .source-content { flex: 1; } | |
| .source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; } | |
| .source-title:hover { color: #1d4ed8; text-decoration: underline; } | |
| .source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; } | |
| .source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } | |
| .chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } | |
| .chat-history::-webkit-scrollbar { width: 6px; } | |
| .chat-history::-webkit-scrollbar-track { background: #f9fafb; } | |
| .chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } | |
| .examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } | |
| .examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */ | |
| .examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; } | |
| .examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } | |
| .markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } | |
| .markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; } | |
| .markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; } | |
| .markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;} | |
| .markdown-content h3 { font-size: 1.2em !important; } | |
| .markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; } | |
| .markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; } | |
| .markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; } | |
| .markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;} | |
| .markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;} | |
| .markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; } | |
| .markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; } | |
| .markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;} | |
| .markdown-content th { background: #f9fafb !important; font-weight: 600; } | |
| .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } | |
| .accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */ | |
| .voice-selector { margin: 0; padding: 0; } | |
| .voice-selector div[data-testid="dropdown"] { /* Target the specific dropdown container */ height: 44px !important; } | |
| .voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } | |
| .voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; } | |
| .audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} | |
| .audio-player audio { width: 100% !important; } | |
| .searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } | |
| .searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } | |
| .error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } | |
| .no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} | |
| @keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } | |
| .searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Add span for animation */ | |
| .dark .gradio-container { background-color: #111827 !important; } | |
| .dark #header { background: linear-gradient(135deg, #1f2937, #374151); } | |
| .dark #header h3 { color: #9ca3af; } | |
| .dark .search-container { background: #1f2937; border-color: #374151; } | |
| .dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; } | |
| .dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; } | |
| .dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; } | |
| .dark .search-box button { background: #3b82f6 !important; } | |
| .dark .search-box button:hover { background: #2563eb !important; } | |
| .dark .search-box button:disabled { background: #4b5563 !important; } | |
| .dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; } | |
| .dark .answer-box p { color: #d1d5db; } | |
| .dark .answer-box code { background: #374151; color: #9ca3af; } | |
| .dark .sources-box { background: #1f2937; border-color: #374151; } | |
| .dark .sources-box h3 { color: #f9fafb; } | |
| .dark .source-item { border-bottom-color: #374151; } | |
| .dark .source-item:hover { background-color: #374151; } | |
| .dark .source-number { color: #9ca3af; } | |
| .dark .source-title { color: #60a5fa; } | |
| .dark .source-title:hover { color: #93c5fd; } | |
| .dark .source-snippet { color: #d1d5db; } | |
| .dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; } | |
| .dark .chat-history::-webkit-scrollbar-track { background: #374151; } | |
| .dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; } | |
| .dark .examples-container { background: #374151; border-color: #4b5563; } | |
| .dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; } | |
| .dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; } | |
| .dark .markdown-content { color: #d1d5db !important; } | |
| .dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; } | |
| .dark .markdown-content a { color: #60a5fa !important; } | |
| .dark .markdown-content a:hover { color: #93c5fd !important; } | |
| .dark .markdown-content code { background: #374151 !important; color: #9ca3af; } | |
| .dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;} | |
| .dark .markdown-content pre code { background: transparent !important; } | |
| .dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; } | |
| .dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; } | |
| .dark .markdown-content th { background: #374151 !important; } | |
| .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } | |
| .dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;} | |
| .dark .voice-selector select:focus { border-color: #3b82f6 !important; } | |
| .dark .audio-player { background: #374151 !important; border-color: #4b5563;} | |
| .dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; } | |
| .dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; } | |
| .dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;} | |
| """ | |
| with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: | |
| chat_history = gr.State([]) | |
| with gr.Column(): # Main container | |
| with gr.Column(elem_id="header"): | |
| gr.Markdown("# π AI Search Assistant") | |
| gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") | |
| with gr.Column(elem_classes="search-container"): | |
| with gr.Row(elem_classes="search-box", equal_height=True): | |
| search_input = gr.Textbox( | |
| label="", | |
| placeholder="Ask anything...", | |
| scale=5, | |
| container=False, # Important for direct styling | |
| elem_classes="gradio-textbox" | |
| ) | |
| voice_select = gr.Dropdown( | |
| choices=list(VOICE_CHOICES.keys()), | |
| value=list(VOICE_CHOICES.keys())[0], | |
| label="", # No label needed here | |
| scale=2, | |
| container=False, # Important | |
| elem_classes="voice-selector gradio-dropdown" | |
| ) | |
| search_btn = gr.Button( | |
| "Search", | |
| variant="primary", | |
| scale=1, | |
| elem_classes="gradio-button" | |
| ) | |
| with gr.Row(elem_classes="results-container", equal_height=False): | |
| with gr.Column(scale=3): # Wider column for answer + history | |
| with gr.Column(elem_classes="answer-box"): | |
| answer_output = gr.Markdown(elem_classes="markdown-content", value="*Your answer will appear here...*") | |
| # Audio player below the answer | |
| audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player", type="numpy") # Expect numpy array | |
| with gr.Accordion("Chat History", open=False, elem_classes="accordion"): | |
| chat_history_display = gr.Chatbot(elem_classes="chat-history", label="History", height=300) | |
| with gr.Column(scale=2): # Narrower column for sources | |
| with gr.Column(elem_classes="sources-box"): | |
| gr.Markdown("### Sources") | |
| sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>") | |
| with gr.Row(elem_classes="examples-container"): | |
| gr.Examples( | |
| examples=[ | |
| "Latest news about renewable energy", | |
| "Explain the concept of Large Language Models (LLMs)", | |
| "What are the symptoms and prevention tips for the flu?", | |
| "Compare Python and JavaScript for web development" | |
| ], | |
| inputs=search_input, | |
| label="Try these examples:", | |
| elem_classes="gradio-examples" # Add class for potential styling | |
| ) | |
| # --- Event Handling --- | |
| # Use the async function for processing | |
| async def handle_interaction(query, history, voice_display_name): | |
| """Wrapper to handle the async generator from process_query_async""" | |
| try: | |
| async for update in process_query_async(query, history, voice_display_name): | |
| # Ensure the button state is updated correctly | |
| ans_out, src_out, btn_state, hist_display, aud_out = update | |
| yield ans_out, src_out, btn_state, hist_display, aud_out | |
| except Exception as e: | |
| print(f"Error in handle_interaction: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| error_message = f"An unexpected error occurred: {e}" | |
| # Provide a final error state update | |
| yield ( | |
| error_message, | |
| "<div class='error'>Error processing request.</div>", | |
| gr.Button(value="Search", interactive=True), # Re-enable button on error | |
| history + [[query, f"*Error: {error_message}*"]], | |
| None | |
| ) | |
| # Corrected event listeners: Pass the voice_select component directly | |
| search_btn.click( | |
| fn=handle_interaction, | |
| inputs=[search_input, chat_history, voice_select], # Pass voice_select component | |
| outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] | |
| ) | |
| search_input.submit( | |
| fn=handle_interaction, | |
| inputs=[search_input, chat_history, voice_select], # Pass voice_select component | |
| outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] | |
| ) | |
| if __name__ == "__main__": | |
| # Launch the app | |
| demo.queue(max_size=20).launch(debug=True, share=True) # Enable debug for more logs |