File size: 12,811 Bytes
1f7fc9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import huggingface_hub
# 
# paths to various models
model_path_configs = {
        "Humpback Whales":      ("Intelligent-Instruments-Lab/rave-models", "humpbacks_pondbrain_b2048_r48000_z20.ts"), 
        "Magnets":              ("Intelligent-Instruments-Lab/rave-models", "magnets_b2048_r48000_z8.ts"), 
        "Big Ensemble":          ("Intelligent-Instruments-Lab/rave-models", "crozzoli_bigensemblesmusic_18d.ts"),
        "Bird Dawn Chorus":       ("Intelligent-Instruments-Lab/rave-models", "birds_dawnchorus_b2048_r48000_z8.ts"), 
        "Speaking & Singing":   ("Intelligent-Instruments-Lab/rave-models", "voice-multi-b2048-r48000-z11.ts"), 
        "Resonator Piano":      ("Intelligent-Instruments-Lab/rave-models", "mrp_strengjavera_b2048_r44100_z16.ts"),
        "Multimbral Guitar":    ("Intelligent-Instruments-Lab/rave-models", "guitar_iil_b2048_r48000_z16.ts"),
        "Organ Archive":        ("Intelligent-Instruments-Lab/rave-models", "organ_archive_b2048_r48000_z16.ts"),
        "Water":                ("Intelligent-Instruments-Lab/rave-models", "water_pondbrain_b2048_r48000_z16.ts"),
        "Brass Sax":            ("shuoyang-zheng/jaspers-rave-models", "aam_brass_sax_b2048_r44100_z8_noncausal.ts"),
        "Speech":               ("shuoyang-zheng/jaspers-rave-models", "librispeech100_b2048_r44100_z8_noncausal.ts"),
        "String":               ("shuoyang-zheng/jaspers-rave-models" ,"aam_string_b2048_r44100_z16_noncausal.ts"),
        "Singer":               ("shuoyang-zheng/jaspers-rave-models","gtsinger_b2048_r44100_z16_noncausal.ts"),
        "Bass":                 ("shuoyang-zheng/jaspers-rave-models","aam_bass_b2048_r44100_z16_noncausal.ts"),
        "Drum":                 ("shuoyang-zheng/jaspers-rave-models","aam_drum_b2048_r44100_z16_noncausal.ts"),
        "Gtr Picking":          ("shuoyang-zheng/jaspers-rave-models","guitar_picking_dm_b2048_r44100_z8_causal.ts"),
    }

available_audio_files=[
    "SilverCaneAbbey-Voices.wav",
    "Chimes.wav",
    "FrenchChildren.wav",
    "Organ-ND.wav",
    "SpigotsOfChateauLEtoge.wav",
    "Gestures-PercStrings.wav",
    "SingingBowl-OmniMic.wav",
    "BirdCalls.mp3",
    ]

model_path_config_keys = sorted(model_path_configs)
model_paths_cache = {}

def GetModelPath(model_path_name):
    model_path = ()

    if model_path_name in model_paths_cache.keys():
        model_path = model_paths_cache[model_path_name]
    else:
        repo_id, filename = model_path_configs[model_path_name]
        
        model_path = huggingface_hub.hf_hub_download(
        repo_id =repo_id,
        filename = filename,
        cache_dir="../huggingface_hub_cache",
        force_download=False,
        )
        
        print(f"Generated Model Path for {filename}.")
        model_paths_cache[model_path_name] = model_path
        
    return model_path 

def saveAudio(file_path, audio):
    with open(file_path + '.wav', 'wb') as f:
        f.write(audio.data)
        
import torch
import pandas as pd
import copy
import librosa
import ast
import os

def AverageRaveModels(rave_a, rave_b, bias = 0):

    r1_ratio = .5
    r2_ratio = .5

    messages = {}
    # bias between -1 and 1
    if abs(bias) <= 1:
        if bias > 0:
            r1_ratio = .5 + bias/2
            r2_ratio = 1.0 - r1_ratio

            rave_temp = rave_a
        elif bias < 0:
            r2_ratio = .5 + abs(bias)/2
            r1_ratio = 1.0 - r2_ratio
    else:
        print(f"Unable to apply bias {bias} - bias must be between -1 and 1.")
    
    # Get state dictionaries of both models
    rave_a_params = rave_a.state_dict()
    rave_b_params = rave_b.state_dict()
    
    # intialize the averaged rave with model_a
    rave_avg = copy.deepcopy(rave_a)
    avg = rave_avg.state_dict()    

    # for reporting
    keys_averaged={}
    keys_not_averaged={}
    for key in rave_a_params:
        if key in rave_b_params:
            try:
                avg[key] = ((rave_a_params[key] * r1_ratio) + (rave_b_params[key] * r2_ratio)) 
                keys_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, "")
            except Exception as e:
                print(f"Error averaging key {key}: {e}")
                keys_not_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, e)
        else:
            print(f"Key {key} not found in rave_b parameters, skipping.")
            # keys_not_averaged(key)
            keys_not_averaged[key]=(key, rave_a_params[key].shape, "n/a", "Key not found in rave_b parameters.")
        
    messages["keys_averaged"] = keys_averaged
    messages["keys_not_averaged"] = keys_not_averaged

    messages["stats"] = f'Numb Params Averaged: {len(keys_averaged)}\nNumb Params Unable to Average: {len(keys_not_averaged)}\nPercent Averaged: {len(keys_averaged) * 100/(len(keys_not_averaged) + len(keys_averaged)):5.2f}%'
    
    # Commit the changes
    rave_avg.load_state_dict(avg) 
    
    return rave_avg, messages

def GenerateRaveEncDecAudio(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple=1, bias=0): #audio_file_name="RJM1240-Gestures.wav"

    ###############################################
    # Choose models from filenames dictionary created in previous cell
    # Note: model_path_a is always used to initialize the averaged model.
    # Switching them gets different results if the parameters are not all matched.
    ###############################################
    # Examples - this matches only 21 params, but it sounds like maybe sosme of both are in the result.
    model_path_a = GetModelPath(model_name_a)
    model_path_b = GetModelPath(model_name_b)

    # Examples: This has 76 params averaged
    # model_path_a = model_paths['Water']
    # model_path_b = model_paths['Organ Archive']

    # Examples: All Params Match but high pitch for averaged version
    # model_path_a = model_paths['Organ Archive']
    # model_path_b = model_paths['Multimbral Guitar']
    #
    # model_path_a = model_paths['String']
    # model_path_b = model_paths['Singer']
    #
    # Examples - All Params Match but get a lower frequency effect
    # model_path_a = model_paths['Whale']
    # model_path_b = model_paths['Water']


    #####################################
    # Set biases between -1 and 1 to bias the result towards one of the models
    #   0 = no bias; >0  biased towards model_a; <0 = biased towards  model_b
    #####################################
    # Note: multiple biases not implemented for gradio version
    biases=[bias]

    ####################################
    # Choose Audio File to encode/decode
    #####################################
    # audio_file_name = "RJM1240-Gestures.wav"
    if audio_file is None:
        audio_file = os.path.join('assets', audio_file_name)
    # print("Audio File Name:", audio_file_name)


    ####################################
    # Generate Audio Files
    # Audio files are created in the assets folder
    generate_audio_files = False

    rave_a = torch.jit.load(model_path_a)
    rave_b = torch.jit.load(model_path_b)

    # Let's load a sample audio file
    y, sr = librosa.load(audio_file)

    sr_multiplied = sr * sr_multiple  # Adjust sample rate if needed
    print(f"Audio File Loaded: {audio_file}, sample_rate = {sr}")
   
    # Convert audio to a PyTorch tensor and reshape it to the
    # required shape: (batch_size, n_channels, n_samples)
    audio = torch.from_numpy(y).float()
    audio = audio.reshape(1, 1, -1) 

    messages={}
    audio_outputs={}
    for bias in biases:
        # Average the rave models
        # rave_avg, numb_params_mod, numb_params_unable_to_mod = AverageRaveModels(rave_a, rave_b, bias=bias)
        rave_avg, new_msgs = AverageRaveModels(rave_a, rave_b, (-1 * bias))
        messages |= new_msgs 

        # no decode the results back to audio
        with torch.no_grad():
            # encode the audio with the new averaged models
            try:
                latent_a = rave_a.encode(audio)
                latent_b = rave_b.encode(audio)
                latent_avg = rave_avg.encode(audio)

                # decode individual and averaged models
                decoded_a = rave_a.decode(latent_a)
                decoded_b = rave_b.decode(latent_b)
                decoded_avg = rave_avg.decode(latent_avg)
                audio_outputs[bias] = decoded_avg[0]
            except:
                print(f'Bias {bias} generated an error. Removing it from list of biases.')
                biases.remove(bias)
                # print(biases)
                
        model_a_file=model_path_a.rsplit("/")[-1]
        model_b_file=model_path_b.rsplit("/")[-1]

        # Original Audio
        original_audio = (sr, y)

        # Decoded Audio
        print("Encoded and Decoded using original models")
        model_a_audio =  (sr, decoded_a[0].detach().numpy().squeeze())
        # saveAudio('assets/' + model_a_file[: 7] + '_only.wav', a)

        model_b_audio = (sr, decoded_b[0].detach().numpy().squeeze())
        # # saveAudio('assets/' + model_b_file[: 7] + '_only.wav', a)

        print("Encoded and Decoded using Averaged Models")
        print("with Biases: ", biases)
        print("\nNumber of params able to average:", len(messages["keys_averaged"]))
        print("Number of params unable to average:", len(messages["keys_not_averaged"]))

        output_file_prefix = f'assets/{model_a_file[: 7]}-{model_b_file[: 7]}_'
        
        bias = biases[0]
        averaged_audio = (sr_multiplied, audio_outputs[bias].detach().numpy().squeeze()) 
        
        df_averaged = pd.DataFrame(messages['keys_averaged']).transpose() #reset_index(names='Param Key')
        df_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']
        
        df_not_averaged = pd.DataFrame(messages["keys_not_averaged"]).transpose()
        
        # case when all params are averaged
        if len(df_not_averaged.columns) == 0:
            data = {'Param Name': [], 'Modeal A Shape': [], 'Model B Shape': [], 'Errors': []}
            df_not_averaged = pd.DataFrame(data)
    
        df_not_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']

        messages["stats"] = f"Model A: {model_name_a}\nModel B: {model_name_b}\nAudio file: {os.path.basename(audio_file)}\nSample Rate Multiple for Averaged Version: {sr_multiple}\n\n" + messages["stats"]
        
        return original_audio, model_a_audio, model_b_audio, averaged_audio, messages["stats"], df_averaged, df_not_averaged
        
import gradio as gr

waveform_options = gr.WaveformOptions(waveform_color="#01C6FF", 
                                                     waveform_progress_color="#0066B4",
                                                     skip_length=2,)
column_widths=['35%', '20%', '20%', '25%']

AverageModels = gr.Interface(title="Process Audio Through Averaged Models.",
    fn=GenerateRaveEncDecAudio,
    inputs=[
        gr.Radio(model_path_config_keys, label="Select Model A", value="Multimbral Guitar", container=True),
        gr.Radio(model_path_config_keys, label="Select Model B", value="Water", container=True),
        gr.Dropdown(available_audio_files, label="Select from these audio files or upload your own below:", value="SilverCaneAbbey-Voices.wav",container=True),
        gr.Audio(label="Upload an audio file (wav)", type="filepath", sources=["upload", "microphone"], max_length=60,
                waveform_options=waveform_options, format='wav'),
        gr.Radio([.2, .5, .75, 1, 2, 4], label="Sample Rate Multiple (Averaged version only)", value=1, container=True),
        gr.Slider(label="Bias towards Model A or B", minimum=-1, maximum=1, value=0, step=0.1, container=True),
        
        ],
    # if no way to pass dictionary, pass separate keys and values and zip them.
    outputs=[
        gr.Audio(label="Original Audio", sources=None, waveform_options=waveform_options, interactive=False),
        gr.Audio(label="Encoded/Decoded through Model A", sources=None, waveform_options=waveform_options,),
        gr.Audio(label="Encoded/Decoded through Model B", sources=None, waveform_options=waveform_options,),
        gr.Audio(label="Encoded/Decoded through averaged model", sources=None, waveform_options=waveform_options,),
        gr.Textbox(label="Stats"),
        gr.Dataframe(label="Params Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']),
        gr.Dataframe(label="Params Not Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors'])
        ]
    ,fill_width=True
)

AverageModels.launch(max_file_size=10 * gr.FileSize.MB, share=True)