Spaces:
Sleeping
Sleeping
Rob Jaret
commited on
Commit
·
1f7fc9d
1
Parent(s):
811fa16
Uploading app.
Browse files- .gitattributes +3 -0
- README.md +14 -0
- app.py +281 -0
- assets/.DS_Store +0 -0
- assets/BirdCalls.mp3 +3 -0
- assets/Chimes.wav +3 -0
- assets/FrenchChildren.wav +3 -0
- assets/GesturesPercStrings.wav +3 -0
- assets/Organ-ND.wav +3 -0
- assets/SilverCaneAbbey-Voices.wav +3 -0
- assets/SingingBowl-OmniMic.wav +3 -0
- assets/SpigotsOfChateauLEtoge.wav +3 -0
- assets/Stylophone.wav +3 -0
- requirements.txt +10 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.m4a filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -10,3 +10,17 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
Built using:
|
| 16 |
+
Mac OS Sequoia 15.5
|
| 17 |
+
Python 3.12
|
| 18 |
+
|
| 19 |
+
Some observations:
|
| 20 |
+
- If all the parameters can be averaged, the result is usuallly a high pitch squeal or low rumble.
|
| 21 |
+
|
| 22 |
+
Outstanding questions for any interested parties:
|
| 23 |
+
- Since it doesn't work well when all params are compatible, are there some params that shouldn't be averaged to keep the resulting model functional?
|
| 24 |
+
- Would it make logical sense to reshape the parameters that exist in both models but do not have the same shape so they can be averaged?
|
| 25 |
+
- Anything else that could make the results sonically more like an average of two models?
|
| 26 |
+
|
app.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import huggingface_hub
|
| 2 |
+
#
|
| 3 |
+
# paths to various models
|
| 4 |
+
model_path_configs = {
|
| 5 |
+
"Humpback Whales": ("Intelligent-Instruments-Lab/rave-models", "humpbacks_pondbrain_b2048_r48000_z20.ts"),
|
| 6 |
+
"Magnets": ("Intelligent-Instruments-Lab/rave-models", "magnets_b2048_r48000_z8.ts"),
|
| 7 |
+
"Big Ensemble": ("Intelligent-Instruments-Lab/rave-models", "crozzoli_bigensemblesmusic_18d.ts"),
|
| 8 |
+
"Bird Dawn Chorus": ("Intelligent-Instruments-Lab/rave-models", "birds_dawnchorus_b2048_r48000_z8.ts"),
|
| 9 |
+
"Speaking & Singing": ("Intelligent-Instruments-Lab/rave-models", "voice-multi-b2048-r48000-z11.ts"),
|
| 10 |
+
"Resonator Piano": ("Intelligent-Instruments-Lab/rave-models", "mrp_strengjavera_b2048_r44100_z16.ts"),
|
| 11 |
+
"Multimbral Guitar": ("Intelligent-Instruments-Lab/rave-models", "guitar_iil_b2048_r48000_z16.ts"),
|
| 12 |
+
"Organ Archive": ("Intelligent-Instruments-Lab/rave-models", "organ_archive_b2048_r48000_z16.ts"),
|
| 13 |
+
"Water": ("Intelligent-Instruments-Lab/rave-models", "water_pondbrain_b2048_r48000_z16.ts"),
|
| 14 |
+
"Brass Sax": ("shuoyang-zheng/jaspers-rave-models", "aam_brass_sax_b2048_r44100_z8_noncausal.ts"),
|
| 15 |
+
"Speech": ("shuoyang-zheng/jaspers-rave-models", "librispeech100_b2048_r44100_z8_noncausal.ts"),
|
| 16 |
+
"String": ("shuoyang-zheng/jaspers-rave-models" ,"aam_string_b2048_r44100_z16_noncausal.ts"),
|
| 17 |
+
"Singer": ("shuoyang-zheng/jaspers-rave-models","gtsinger_b2048_r44100_z16_noncausal.ts"),
|
| 18 |
+
"Bass": ("shuoyang-zheng/jaspers-rave-models","aam_bass_b2048_r44100_z16_noncausal.ts"),
|
| 19 |
+
"Drum": ("shuoyang-zheng/jaspers-rave-models","aam_drum_b2048_r44100_z16_noncausal.ts"),
|
| 20 |
+
"Gtr Picking": ("shuoyang-zheng/jaspers-rave-models","guitar_picking_dm_b2048_r44100_z8_causal.ts"),
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
available_audio_files=[
|
| 24 |
+
"SilverCaneAbbey-Voices.wav",
|
| 25 |
+
"Chimes.wav",
|
| 26 |
+
"FrenchChildren.wav",
|
| 27 |
+
"Organ-ND.wav",
|
| 28 |
+
"SpigotsOfChateauLEtoge.wav",
|
| 29 |
+
"Gestures-PercStrings.wav",
|
| 30 |
+
"SingingBowl-OmniMic.wav",
|
| 31 |
+
"BirdCalls.mp3",
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
model_path_config_keys = sorted(model_path_configs)
|
| 35 |
+
model_paths_cache = {}
|
| 36 |
+
|
| 37 |
+
def GetModelPath(model_path_name):
|
| 38 |
+
model_path = ()
|
| 39 |
+
|
| 40 |
+
if model_path_name in model_paths_cache.keys():
|
| 41 |
+
model_path = model_paths_cache[model_path_name]
|
| 42 |
+
else:
|
| 43 |
+
repo_id, filename = model_path_configs[model_path_name]
|
| 44 |
+
|
| 45 |
+
model_path = huggingface_hub.hf_hub_download(
|
| 46 |
+
repo_id =repo_id,
|
| 47 |
+
filename = filename,
|
| 48 |
+
cache_dir="../huggingface_hub_cache",
|
| 49 |
+
force_download=False,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
print(f"Generated Model Path for {filename}.")
|
| 53 |
+
model_paths_cache[model_path_name] = model_path
|
| 54 |
+
|
| 55 |
+
return model_path
|
| 56 |
+
|
| 57 |
+
def saveAudio(file_path, audio):
|
| 58 |
+
with open(file_path + '.wav', 'wb') as f:
|
| 59 |
+
f.write(audio.data)
|
| 60 |
+
|
| 61 |
+
import torch
|
| 62 |
+
import pandas as pd
|
| 63 |
+
import copy
|
| 64 |
+
import librosa
|
| 65 |
+
import ast
|
| 66 |
+
import os
|
| 67 |
+
|
| 68 |
+
def AverageRaveModels(rave_a, rave_b, bias = 0):
|
| 69 |
+
|
| 70 |
+
r1_ratio = .5
|
| 71 |
+
r2_ratio = .5
|
| 72 |
+
|
| 73 |
+
messages = {}
|
| 74 |
+
# bias between -1 and 1
|
| 75 |
+
if abs(bias) <= 1:
|
| 76 |
+
if bias > 0:
|
| 77 |
+
r1_ratio = .5 + bias/2
|
| 78 |
+
r2_ratio = 1.0 - r1_ratio
|
| 79 |
+
|
| 80 |
+
rave_temp = rave_a
|
| 81 |
+
elif bias < 0:
|
| 82 |
+
r2_ratio = .5 + abs(bias)/2
|
| 83 |
+
r1_ratio = 1.0 - r2_ratio
|
| 84 |
+
else:
|
| 85 |
+
print(f"Unable to apply bias {bias} - bias must be between -1 and 1.")
|
| 86 |
+
|
| 87 |
+
# Get state dictionaries of both models
|
| 88 |
+
rave_a_params = rave_a.state_dict()
|
| 89 |
+
rave_b_params = rave_b.state_dict()
|
| 90 |
+
|
| 91 |
+
# intialize the averaged rave with model_a
|
| 92 |
+
rave_avg = copy.deepcopy(rave_a)
|
| 93 |
+
avg = rave_avg.state_dict()
|
| 94 |
+
|
| 95 |
+
# for reporting
|
| 96 |
+
keys_averaged={}
|
| 97 |
+
keys_not_averaged={}
|
| 98 |
+
for key in rave_a_params:
|
| 99 |
+
if key in rave_b_params:
|
| 100 |
+
try:
|
| 101 |
+
avg[key] = ((rave_a_params[key] * r1_ratio) + (rave_b_params[key] * r2_ratio))
|
| 102 |
+
keys_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, "")
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"Error averaging key {key}: {e}")
|
| 105 |
+
keys_not_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, e)
|
| 106 |
+
else:
|
| 107 |
+
print(f"Key {key} not found in rave_b parameters, skipping.")
|
| 108 |
+
# keys_not_averaged(key)
|
| 109 |
+
keys_not_averaged[key]=(key, rave_a_params[key].shape, "n/a", "Key not found in rave_b parameters.")
|
| 110 |
+
|
| 111 |
+
messages["keys_averaged"] = keys_averaged
|
| 112 |
+
messages["keys_not_averaged"] = keys_not_averaged
|
| 113 |
+
|
| 114 |
+
messages["stats"] = f'Numb Params Averaged: {len(keys_averaged)}\nNumb Params Unable to Average: {len(keys_not_averaged)}\nPercent Averaged: {len(keys_averaged) * 100/(len(keys_not_averaged) + len(keys_averaged)):5.2f}%'
|
| 115 |
+
|
| 116 |
+
# Commit the changes
|
| 117 |
+
rave_avg.load_state_dict(avg)
|
| 118 |
+
|
| 119 |
+
return rave_avg, messages
|
| 120 |
+
|
| 121 |
+
def GenerateRaveEncDecAudio(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple=1, bias=0): #audio_file_name="RJM1240-Gestures.wav"
|
| 122 |
+
|
| 123 |
+
###############################################
|
| 124 |
+
# Choose models from filenames dictionary created in previous cell
|
| 125 |
+
# Note: model_path_a is always used to initialize the averaged model.
|
| 126 |
+
# Switching them gets different results if the parameters are not all matched.
|
| 127 |
+
###############################################
|
| 128 |
+
# Examples - this matches only 21 params, but it sounds like maybe sosme of both are in the result.
|
| 129 |
+
model_path_a = GetModelPath(model_name_a)
|
| 130 |
+
model_path_b = GetModelPath(model_name_b)
|
| 131 |
+
|
| 132 |
+
# Examples: This has 76 params averaged
|
| 133 |
+
# model_path_a = model_paths['Water']
|
| 134 |
+
# model_path_b = model_paths['Organ Archive']
|
| 135 |
+
|
| 136 |
+
# Examples: All Params Match but high pitch for averaged version
|
| 137 |
+
# model_path_a = model_paths['Organ Archive']
|
| 138 |
+
# model_path_b = model_paths['Multimbral Guitar']
|
| 139 |
+
#
|
| 140 |
+
# model_path_a = model_paths['String']
|
| 141 |
+
# model_path_b = model_paths['Singer']
|
| 142 |
+
#
|
| 143 |
+
# Examples - All Params Match but get a lower frequency effect
|
| 144 |
+
# model_path_a = model_paths['Whale']
|
| 145 |
+
# model_path_b = model_paths['Water']
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
#####################################
|
| 149 |
+
# Set biases between -1 and 1 to bias the result towards one of the models
|
| 150 |
+
# 0 = no bias; >0 biased towards model_a; <0 = biased towards model_b
|
| 151 |
+
#####################################
|
| 152 |
+
# Note: multiple biases not implemented for gradio version
|
| 153 |
+
biases=[bias]
|
| 154 |
+
|
| 155 |
+
####################################
|
| 156 |
+
# Choose Audio File to encode/decode
|
| 157 |
+
#####################################
|
| 158 |
+
# audio_file_name = "RJM1240-Gestures.wav"
|
| 159 |
+
if audio_file is None:
|
| 160 |
+
audio_file = os.path.join('assets', audio_file_name)
|
| 161 |
+
# print("Audio File Name:", audio_file_name)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
####################################
|
| 165 |
+
# Generate Audio Files
|
| 166 |
+
# Audio files are created in the assets folder
|
| 167 |
+
generate_audio_files = False
|
| 168 |
+
|
| 169 |
+
rave_a = torch.jit.load(model_path_a)
|
| 170 |
+
rave_b = torch.jit.load(model_path_b)
|
| 171 |
+
|
| 172 |
+
# Let's load a sample audio file
|
| 173 |
+
y, sr = librosa.load(audio_file)
|
| 174 |
+
|
| 175 |
+
sr_multiplied = sr * sr_multiple # Adjust sample rate if needed
|
| 176 |
+
print(f"Audio File Loaded: {audio_file}, sample_rate = {sr}")
|
| 177 |
+
|
| 178 |
+
# Convert audio to a PyTorch tensor and reshape it to the
|
| 179 |
+
# required shape: (batch_size, n_channels, n_samples)
|
| 180 |
+
audio = torch.from_numpy(y).float()
|
| 181 |
+
audio = audio.reshape(1, 1, -1)
|
| 182 |
+
|
| 183 |
+
messages={}
|
| 184 |
+
audio_outputs={}
|
| 185 |
+
for bias in biases:
|
| 186 |
+
# Average the rave models
|
| 187 |
+
# rave_avg, numb_params_mod, numb_params_unable_to_mod = AverageRaveModels(rave_a, rave_b, bias=bias)
|
| 188 |
+
rave_avg, new_msgs = AverageRaveModels(rave_a, rave_b, (-1 * bias))
|
| 189 |
+
messages |= new_msgs
|
| 190 |
+
|
| 191 |
+
# no decode the results back to audio
|
| 192 |
+
with torch.no_grad():
|
| 193 |
+
# encode the audio with the new averaged models
|
| 194 |
+
try:
|
| 195 |
+
latent_a = rave_a.encode(audio)
|
| 196 |
+
latent_b = rave_b.encode(audio)
|
| 197 |
+
latent_avg = rave_avg.encode(audio)
|
| 198 |
+
|
| 199 |
+
# decode individual and averaged models
|
| 200 |
+
decoded_a = rave_a.decode(latent_a)
|
| 201 |
+
decoded_b = rave_b.decode(latent_b)
|
| 202 |
+
decoded_avg = rave_avg.decode(latent_avg)
|
| 203 |
+
audio_outputs[bias] = decoded_avg[0]
|
| 204 |
+
except:
|
| 205 |
+
print(f'Bias {bias} generated an error. Removing it from list of biases.')
|
| 206 |
+
biases.remove(bias)
|
| 207 |
+
# print(biases)
|
| 208 |
+
|
| 209 |
+
model_a_file=model_path_a.rsplit("/")[-1]
|
| 210 |
+
model_b_file=model_path_b.rsplit("/")[-1]
|
| 211 |
+
|
| 212 |
+
# Original Audio
|
| 213 |
+
original_audio = (sr, y)
|
| 214 |
+
|
| 215 |
+
# Decoded Audio
|
| 216 |
+
print("Encoded and Decoded using original models")
|
| 217 |
+
model_a_audio = (sr, decoded_a[0].detach().numpy().squeeze())
|
| 218 |
+
# saveAudio('assets/' + model_a_file[: 7] + '_only.wav', a)
|
| 219 |
+
|
| 220 |
+
model_b_audio = (sr, decoded_b[0].detach().numpy().squeeze())
|
| 221 |
+
# # saveAudio('assets/' + model_b_file[: 7] + '_only.wav', a)
|
| 222 |
+
|
| 223 |
+
print("Encoded and Decoded using Averaged Models")
|
| 224 |
+
print("with Biases: ", biases)
|
| 225 |
+
print("\nNumber of params able to average:", len(messages["keys_averaged"]))
|
| 226 |
+
print("Number of params unable to average:", len(messages["keys_not_averaged"]))
|
| 227 |
+
|
| 228 |
+
output_file_prefix = f'assets/{model_a_file[: 7]}-{model_b_file[: 7]}_'
|
| 229 |
+
|
| 230 |
+
bias = biases[0]
|
| 231 |
+
averaged_audio = (sr_multiplied, audio_outputs[bias].detach().numpy().squeeze())
|
| 232 |
+
|
| 233 |
+
df_averaged = pd.DataFrame(messages['keys_averaged']).transpose() #reset_index(names='Param Key')
|
| 234 |
+
df_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']
|
| 235 |
+
|
| 236 |
+
df_not_averaged = pd.DataFrame(messages["keys_not_averaged"]).transpose()
|
| 237 |
+
|
| 238 |
+
# case when all params are averaged
|
| 239 |
+
if len(df_not_averaged.columns) == 0:
|
| 240 |
+
data = {'Param Name': [], 'Modeal A Shape': [], 'Model B Shape': [], 'Errors': []}
|
| 241 |
+
df_not_averaged = pd.DataFrame(data)
|
| 242 |
+
|
| 243 |
+
df_not_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']
|
| 244 |
+
|
| 245 |
+
messages["stats"] = f"Model A: {model_name_a}\nModel B: {model_name_b}\nAudio file: {os.path.basename(audio_file)}\nSample Rate Multiple for Averaged Version: {sr_multiple}\n\n" + messages["stats"]
|
| 246 |
+
|
| 247 |
+
return original_audio, model_a_audio, model_b_audio, averaged_audio, messages["stats"], df_averaged, df_not_averaged
|
| 248 |
+
|
| 249 |
+
import gradio as gr
|
| 250 |
+
|
| 251 |
+
waveform_options = gr.WaveformOptions(waveform_color="#01C6FF",
|
| 252 |
+
waveform_progress_color="#0066B4",
|
| 253 |
+
skip_length=2,)
|
| 254 |
+
column_widths=['35%', '20%', '20%', '25%']
|
| 255 |
+
|
| 256 |
+
AverageModels = gr.Interface(title="Process Audio Through Averaged Models.",
|
| 257 |
+
fn=GenerateRaveEncDecAudio,
|
| 258 |
+
inputs=[
|
| 259 |
+
gr.Radio(model_path_config_keys, label="Select Model A", value="Multimbral Guitar", container=True),
|
| 260 |
+
gr.Radio(model_path_config_keys, label="Select Model B", value="Water", container=True),
|
| 261 |
+
gr.Dropdown(available_audio_files, label="Select from these audio files or upload your own below:", value="SilverCaneAbbey-Voices.wav",container=True),
|
| 262 |
+
gr.Audio(label="Upload an audio file (wav)", type="filepath", sources=["upload", "microphone"], max_length=60,
|
| 263 |
+
waveform_options=waveform_options, format='wav'),
|
| 264 |
+
gr.Radio([.2, .5, .75, 1, 2, 4], label="Sample Rate Multiple (Averaged version only)", value=1, container=True),
|
| 265 |
+
gr.Slider(label="Bias towards Model A or B", minimum=-1, maximum=1, value=0, step=0.1, container=True),
|
| 266 |
+
|
| 267 |
+
],
|
| 268 |
+
# if no way to pass dictionary, pass separate keys and values and zip them.
|
| 269 |
+
outputs=[
|
| 270 |
+
gr.Audio(label="Original Audio", sources=None, waveform_options=waveform_options, interactive=False),
|
| 271 |
+
gr.Audio(label="Encoded/Decoded through Model A", sources=None, waveform_options=waveform_options,),
|
| 272 |
+
gr.Audio(label="Encoded/Decoded through Model B", sources=None, waveform_options=waveform_options,),
|
| 273 |
+
gr.Audio(label="Encoded/Decoded through averaged model", sources=None, waveform_options=waveform_options,),
|
| 274 |
+
gr.Textbox(label="Stats"),
|
| 275 |
+
gr.Dataframe(label="Params Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']),
|
| 276 |
+
gr.Dataframe(label="Params Not Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors'])
|
| 277 |
+
]
|
| 278 |
+
,fill_width=True
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
AverageModels.launch(max_file_size=10 * gr.FileSize.MB, share=True)
|
assets/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
assets/BirdCalls.mp3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d38844d6abf337397f58fe4abb33e97a805ab33c570856da6cbeec5e4b3ce6d3
|
| 3 |
+
size 1054464
|
assets/Chimes.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01f3b697316f78e2fdaa4584fa25cdf66c9e0a2c6a7504e9a7a9cedc8e30a596
|
| 3 |
+
size 4267712
|
assets/FrenchChildren.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a50753cf3d99baa5ebdefda6972b8f112c39b30eabee74f7b5b1da9c65cd3e2c
|
| 3 |
+
size 2712908
|
assets/GesturesPercStrings.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d503a73fcb5223744ed421de6d5842945ddc5fcebf6ba5077954854e44e697d1
|
| 3 |
+
size 9817514
|
assets/Organ-ND.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20d16777d58088f5e7c314bccbff40a142ed54481decbeb0c33f001aef1adbc2
|
| 3 |
+
size 7310666
|
assets/SilverCaneAbbey-Voices.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a142c9f0e3783e8930d4df3b481a83d2753c97489fc4031b983fbebece2afbf
|
| 3 |
+
size 2790688
|
assets/SingingBowl-OmniMic.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8dc0800e4d28b98928f8c8552bfa53f0e57e80ee0a050de78353fdeb2472bc3b
|
| 3 |
+
size 3677380
|
assets/SpigotsOfChateauLEtoge.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7b5fe1427a61265dbaae9724478b9512b538799b589180ceea900d9051e03c8
|
| 3 |
+
size 4332398
|
assets/Stylophone.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:419ae9cd13e815ecdab0400c81b744c716346fe9aa9afec0d28a66892ceabbcb
|
| 3 |
+
size 3851504
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ipykernel==6.29.5
|
| 2 |
+
numpy==2.2.5
|
| 3 |
+
transformers==4.51.3
|
| 4 |
+
torch==2.7.0
|
| 5 |
+
torchaudio==2.7.0
|
| 6 |
+
librosa==0.11.0
|
| 7 |
+
torchinfo @ git+https://github.com/lancelotblanchard/torchinfo@87dd4eb
|
| 8 |
+
pandas==2.2.3
|
| 9 |
+
ffmpeg=1.4
|
| 10 |
+
ffprobe=0.5
|