File size: 18,145 Bytes
383af88
f235195
 
383af88
 
30311f2
 
 
 
 
 
 
 
383af88
30311f2
 
 
 
 
 
383af88
30311f2
 
 
 
 
 
 
 
 
 
 
f235195
30311f2
 
 
f235195
30311f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f235195
30311f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e24adc
 
 
 
 
30311f2
 
 
 
f235195
30311f2
 
 
 
 
 
 
 
 
 
 
 
d3ca789
30311f2
 
f235195
30311f2
 
d3ca789
30311f2
 
 
f235195
30311f2
 
 
 
d3ca789
 
30311f2
 
 
 
 
 
 
 
 
f235195
30311f2
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ca789
30311f2
 
 
 
 
 
f235195
30311f2
 
 
f235195
30311f2
 
f235195
 
30311f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f235195
 
30311f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f235195
30311f2
 
 
 
 
 
f235195
 
 
 
 
d3ca789
 
f235195
 
30311f2
d3ca789
30311f2
 
d3ca789
30311f2
 
d3ca789
30311f2
f235195
 
 
d3ca789
f235195
 
d3ca789
f235195
30311f2
f235195
b2d91c3
d3ca789
f235195
 
 
 
 
 
30311f2
 
 
f235195
 
 
 
d3ca789
30311f2
 
f235195
30311f2
f235195
30311f2
 
f235195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98cf91f
 
 
 
30311f2
 
 
f235195
 
 
 
 
 
 
30311f2
 
f235195
 
30311f2
f235195
 
 
 
 
 
30311f2
f235195
 
 
 
 
 
30311f2
f235195
 
 
 
 
98cf91f
 
 
 
 
 
bc0e0a2
d3ca789
bc0e0a2
d3ca789
bc0e0a2
 
f235195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30311f2
 
 
d3ca789
30311f2
f235195
d3ca789
f235195
 
 
 
 
 
30311f2
 
 
 
f235195
98cf91f
 
 
f235195
 
 
30311f2
 
f235195
 
 
 
 
 
 
 
 
 
 
30311f2
383af88
 
 
 
 
 
 
 
f235195
383af88
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
"""
DOLPHIN PDF Document AI - Final Version
Optimized for HuggingFace Spaces NVIDIA T4 Small deployment
"""

import gradio as gr
import json
import markdown
import cv2
import numpy as np
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
import torch
import os
import tempfile
import uuid
import base64
import io
from utils.utils import *
from utils.markdown_utils import MarkdownConverter

# Math extension is optional for enhanced math rendering
MATH_EXTENSION_AVAILABLE = False
try:
    from mdx_math import MathExtension
    MATH_EXTENSION_AVAILABLE = True
except ImportError:
    pass


class DOLPHIN:
    def __init__(self, model_id_or_path):
        """Initialize the Hugging Face model optimized for T4 Small"""
        self.processor = AutoProcessor.from_pretrained(model_id_or_path)
        self.model = VisionEncoderDecoderModel.from_pretrained(
            model_id_or_path,
            torch_dtype=torch.float16,
            device_map="auto" if torch.cuda.is_available() else None
        )
        self.model.eval()
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        if not torch.cuda.is_available():
            self.model = self.model.float()
        
        self.tokenizer = self.processor.tokenizer
        
    def chat(self, prompt, image):
        """Process an image or batch of images with the given prompt(s)"""
        is_batch = isinstance(image, list)
        
        if not is_batch:
            images = [image]
            prompts = [prompt]
        else:
            images = image
            prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
        
        batch_inputs = self.processor(images, return_tensors="pt", padding=True)
        batch_pixel_values = batch_inputs.pixel_values
        
        if torch.cuda.is_available():
            batch_pixel_values = batch_pixel_values.half().to(self.device)
        else:
            batch_pixel_values = batch_pixel_values.to(self.device)
        
        prompts = [f"<s>{p} <Answer/>" for p in prompts]
        batch_prompt_inputs = self.tokenizer(
            prompts,
            add_special_tokens=False,
            return_tensors="pt"
        )

        batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
        batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                pixel_values=batch_pixel_values,
                decoder_input_ids=batch_prompt_ids,
                decoder_attention_mask=batch_attention_mask,
                min_length=1,
                max_length=1024,  # Reduced for T4 Small
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=self.tokenizer.eos_token_id,
                use_cache=True,
                bad_words_ids=[[self.tokenizer.unk_token_id]],
                return_dict_in_generate=True,
                do_sample=False,
                num_beams=1,
                repetition_penalty=1.1,
                temperature=1.0
            )
        
        sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
        
        results = []
        for i, sequence in enumerate(sequences):
            cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
            results.append(cleaned)
            
        if not is_batch:
            return results[0]
        return results


def convert_pdf_to_images_gradio(pdf_file):
    """Convert uploaded PDF file to list of PIL Images"""
    try:
        import pymupdf
        
        if isinstance(pdf_file, str):
            pdf_document = pymupdf.open(pdf_file)
        else:
            pdf_bytes = pdf_file.read()
            pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
        
        images = []
        for page_num in range(len(pdf_document)):
            page = pdf_document[page_num]
            mat = pymupdf.Matrix(2.0, 2.0)
            pix = page.get_pixmap(matrix=mat)
            img_data = pix.tobytes("png")
            pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
            images.append(pil_image)
        
        pdf_document.close()
        return images
        
    except Exception as e:
        raise Exception(f"Error converting PDF: {str(e)}")


def process_pdf_document(pdf_file, model, progress=gr.Progress()):
    """Process uploaded PDF file page by page"""
    if pdf_file is None:
        return "No PDF file uploaded", ""
    
    try:
        progress(0.1, desc="Converting PDF to images...")
        images = convert_pdf_to_images_gradio(pdf_file)
        
        if not images:
            return "Failed to convert PDF to images", ""
        
        all_results = []
        
        for page_idx, pil_image in enumerate(images):
            progress((page_idx + 1) / len(images) * 0.8 + 0.1, 
                    desc=f"Processing page {page_idx + 1}/{len(images)}...")
            
            layout_output = model.chat("Parse the reading order of this document.", pil_image)
            
            padded_image, dims = prepare_image(pil_image)
            recognition_results = process_elements_optimized(
                layout_output, 
                padded_image, 
                dims, 
                model, 
                max_batch_size=2  # Smaller batch for T4 Small
            )
            
            try:
                markdown_converter = MarkdownConverter()
                markdown_content = markdown_converter.convert(recognition_results)
            except:
                markdown_content = generate_fallback_markdown(recognition_results)
            
            page_result = {
                "page_number": page_idx + 1,
                "markdown": markdown_content
            }
            all_results.append(page_result)
        
        progress(1.0, desc="Processing complete!")
        
        combined_markdown = "\n\n---\n\n".join([
            f"# Page {result['page_number']}\n\n{result['markdown']}" 
            for result in all_results
        ])
        
        return combined_markdown, "processing_complete"
        
    except Exception as e:
        error_msg = f"Error processing PDF: {str(e)}"
        return error_msg, "error"


def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2):
    """Optimized element processing for T4 Small"""
    layout_results = parse_layout_string(layout_results)
    
    text_elements = []
    table_elements = []
    figure_results = []
    previous_box = None
    reading_order = 0
    
    for bbox, label in layout_results:
        try:
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )
            
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
                if label == "fig":
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    pil_crop = crop_margin(pil_crop)
                    
                    buffered = io.BytesIO()
                    pil_crop.save(buffered, format="PNG")
                    img_base64 = base64.b64encode(buffered.getvalue()).decode()
                    data_uri = f"data:image/png;base64,{img_base64}"
                    
                    figure_results.append({
                        "label": label,
                        "text": f"![Figure {reading_order}]({data_uri})",
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    })
                else:
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    
                    if label == "tab":
                        table_elements.append(element_info)
                    else:
                        text_elements.append(element_info)
                        
            reading_order += 1
            
        except Exception as e:
            print(f"Error processing element {label}: {str(e)}")
            continue
    
    recognition_results = figure_results.copy()
    
    if text_elements:
        text_results = process_element_batch_optimized(
            text_elements, model, "Read text in the image.", max_batch_size
        )
        recognition_results.extend(text_results)
    
    if table_elements:
        table_results = process_element_batch_optimized(
            table_elements, model, "Parse the table in the image.", max_batch_size
        )
        recognition_results.extend(table_results)
    
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))
    return recognition_results


def process_element_batch_optimized(elements, model, prompt, max_batch_size=2):
    """Process elements in small batches for T4 Small"""
    results = []
    batch_size = min(len(elements), max_batch_size)
    
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        prompts_list = [prompt] * len(crops_list)
        
        batch_results = model.chat(prompts_list, crops_list)
        
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
            
        del crops_list, batch_elements
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    return results


def generate_fallback_markdown(recognition_results):
    """Generate basic markdown if converter fails"""
    markdown_content = ""
    for element in recognition_results:
        if element["label"] == "tab":
            markdown_content += f"\n\n{element['text']}\n\n"
        elif element["label"] in ["para", "title", "sec", "sub_sec"]:
            markdown_content += f"{element['text']}\n\n"
        elif element["label"] == "fig":
            markdown_content += f"{element['text']}\n\n"
    return markdown_content


# Initialize model
model_path = "./hf_model"
if not os.path.exists(model_path):
    model_path = "ByteDance/DOLPHIN"

try:
    dolphin_model = DOLPHIN(model_path)
    print(f"Model loaded successfully from {model_path}")
    model_status = f"βœ… Model ready (Device: {dolphin_model.device})"
except Exception as e:
    print(f"Error loading model: {e}")
    dolphin_model = None
    model_status = f"❌ Model failed to load: {str(e)}"


# Global state for managing tabs
processed_markdown = ""
show_results_tab = False


def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
    """Main processing function for uploaded PDF"""
    global processed_markdown, show_results_tab
    
    if dolphin_model is None:
        return "❌ Model not loaded", gr.Tabs(visible=False)
    
    if pdf_file is None:
        return "❌ No PDF uploaded", gr.Tabs(visible=False)
    
    try:
        combined_markdown, status = process_pdf_document(pdf_file, dolphin_model, progress)
        
        if status == "processing_complete":
            processed_markdown = combined_markdown
            show_results_tab = True
            return "βœ… PDF processed successfully! Check the 'Document' tab above.", gr.Tabs(visible=True)
        else:
            show_results_tab = False
            return combined_markdown, gr.Tabs(visible=False)
            
    except Exception as e:
        show_results_tab = False
        error_msg = f"❌ Error processing PDF: {str(e)}"
        return error_msg, gr.Tabs(visible=False)


def get_processed_markdown():
    """Return the processed markdown content"""
    global processed_markdown
    return processed_markdown if processed_markdown else "No document processed yet."


def clear_all():
    """Clear all data and hide results tab"""
    global processed_markdown, show_results_tab
    processed_markdown = ""
    show_results_tab = False
    return None, "βœ… Ready to process your PDF", gr.Tabs(visible=False)


# Create Gradio interface
with gr.Blocks(
    title="DOLPHIN PDF AI", 
    theme=gr.themes.Soft(),
    css="""
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
    
    * {
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
    }
    
    .main-container { 
        max-width: 1000px; 
        margin: 0 auto; 
    }
    .upload-container { 
        text-align: center; 
        padding: 40px 20px;
        border: 2px dashed #e0e0e0;
        border-radius: 15px;
        margin: 20px 0;
    }
    .upload-button {
        font-size: 18px !important;
        padding: 15px 30px !important;
        margin: 20px 0 !important;
        font-weight: 600 !important;
    }
    .status-message {
        text-align: center;
        padding: 15px;
        margin: 10px 0;
        border-radius: 8px;
        font-weight: 500;
    }
    .chatbot-container {
        max-height: 600px;
    }
    h1, h2, h3 {
        font-weight: 700 !important;
    }
    #progress-container {
        margin: 10px 0;
        min-height: 20px;
    }
    """
) as demo:
    
    with gr.Tabs() as main_tabs:
        # Home Tab
        with gr.TabItem("🏠 Home", id="home"):
            gr.Markdown(
                "# Scholar Express\n"
                "### Upload a research paper to get a web-friendly version, an AI chatbot, and a podcast summary. Because of our reliance on Generative AI, some errors are inevitable.\n"
                f"**Status:** {model_status}"
            )
            
            with gr.Column(elem_classes="upload-container"):
                gr.Markdown("## πŸ“„ Upload Your PDF Document")
                
                pdf_input = gr.File(
                    file_types=[".pdf"],
                    label="",
                    height=150,
                    elem_id="pdf_upload"
                )
                
                process_btn = gr.Button(
                    "πŸš€ Process PDF", 
                    variant="primary", 
                    size="lg",
                    elem_classes="upload-button"
                )
                
                clear_btn = gr.Button(
                    "πŸ—‘οΈ Clear", 
                    variant="secondary"
                )
            
            # Dedicated progress space
            progress_space = gr.HTML(
                value="",
                visible=False,
                elem_id="progress-container"
            )
            
            # Status output (hidden during processing)
            status_output = gr.Markdown(
                "βœ… Ready to process your PDF",
                elem_classes="status-message"
            )
        
        # Results Tab (initially hidden)
        with gr.TabItem("πŸ“– Document", id="results", visible=False) as results_tab:
            gr.Markdown("## Processed Document")
            
            markdown_display = gr.Markdown(
                value="",
                latex_delimiters=[
                    {"left": "$$", "right": "$$", "display": True},
                    {"left": "$", "right": "$", "display": False}
                ],
                height=700
            )
        
        # Chatbot Tab (initially hidden)
        with gr.TabItem("πŸ’¬ Chat", id="chat", visible=False) as chat_tab:
            gr.Markdown("## Ask Questions About Your Document")
            
            chatbot = gr.Chatbot(
                value=[],
                height=500,
                elem_classes="chatbot-container",
                placeholder="Your conversation will appear here once you process a document..."
            )
            
            with gr.Row():
                msg_input = gr.Textbox(
                    placeholder="Ask a question about the processed document...",
                    scale=4,
                    container=False
                )
                send_btn = gr.Button("Send", variant="primary", scale=1)
            
            gr.Markdown(
                "*Chat functionality will be implemented in the next version*",
                elem_id="chat-notice"
            )
    
    # Event handlers
    process_btn.click(
        fn=process_uploaded_pdf,
        inputs=[pdf_input],
        outputs=[status_output, results_tab],
        show_progress=True
    ).then(
        fn=get_processed_markdown,
        outputs=[markdown_display]
    ).then(
        fn=lambda: gr.TabItem(visible=True),
        outputs=[chat_tab]
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[pdf_input, status_output, results_tab]
    ).then(
        fn=lambda: gr.HTML(visible=False),
        outputs=[progress_space]
    ).then(
        fn=lambda: gr.TabItem(visible=False),
        outputs=[chat_tab]
    )
    
    # Placeholder chat functionality
    def placeholder_chat(message, history):
        return history + [["Coming soon: AI-powered document Q&A", "This feature will allow you to ask questions about your processed PDF document."]]
    
    send_btn.click(
        fn=placeholder_chat,
        inputs=[msg_input, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        outputs=[msg_input]
    )


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        max_threads=1,  # Single thread for T4 Small
        inbrowser=False,
        quiet=True
    )