Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,521 @@
|
|
| 1 |
"""
|
| 2 |
-
|
|
|
|
| 3 |
"""
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# Import and run the Gradio app
|
| 12 |
-
from gradio_pdf_app import demo
|
| 13 |
|
| 14 |
if __name__ == "__main__":
|
| 15 |
-
# Launch the app for HuggingFace Spaces
|
| 16 |
demo.launch(
|
| 17 |
server_name="0.0.0.0",
|
| 18 |
server_port=7860,
|
| 19 |
share=False,
|
| 20 |
show_error=True,
|
| 21 |
-
enable_queue=True,
|
| 22 |
-
max_threads=2,
|
| 23 |
-
# Additional HF Spaces specific settings
|
| 24 |
inbrowser=False,
|
| 25 |
show_tips=False,
|
| 26 |
quiet=True
|
|
|
|
| 1 |
"""
|
| 2 |
+
PDF Document Processing Gradio App for HuggingFace Spaces
|
| 3 |
+
Built on DOLPHIN model for document parsing and analysis
|
| 4 |
"""
|
| 5 |
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import json
|
| 8 |
+
import markdown
|
| 9 |
+
import cv2
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from transformers import AutoProcessor, VisionEncoderDecoderModel
|
| 13 |
+
import torch
|
| 14 |
import os
|
| 15 |
+
import tempfile
|
| 16 |
+
import uuid
|
| 17 |
+
import base64
|
| 18 |
+
import io
|
| 19 |
+
from utils.utils import *
|
| 20 |
+
from utils.markdown_utils import MarkdownConverter
|
| 21 |
|
| 22 |
+
# Math extension is optional for enhanced math rendering
|
| 23 |
+
MATH_EXTENSION_AVAILABLE = False
|
| 24 |
+
try:
|
| 25 |
+
from mdx_math import MathExtension
|
| 26 |
+
MATH_EXTENSION_AVAILABLE = True
|
| 27 |
+
except ImportError:
|
| 28 |
+
# mdx_math is not available in standard PyPI, gracefully continue without it
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class DOLPHIN:
|
| 33 |
+
def __init__(self, model_id_or_path):
|
| 34 |
+
"""Initialize the Hugging Face model optimized for HF Spaces
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
model_id_or_path: Path to local model or Hugging Face model ID
|
| 38 |
+
"""
|
| 39 |
+
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
|
| 40 |
+
self.model = VisionEncoderDecoderModel.from_pretrained(
|
| 41 |
+
model_id_or_path,
|
| 42 |
+
torch_dtype=torch.float16, # Use half precision for memory efficiency
|
| 43 |
+
device_map="auto" if torch.cuda.is_available() else None
|
| 44 |
+
)
|
| 45 |
+
self.model.eval()
|
| 46 |
+
|
| 47 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
+
if not torch.cuda.is_available():
|
| 49 |
+
# Keep full precision on CPU
|
| 50 |
+
self.model = self.model.float()
|
| 51 |
+
|
| 52 |
+
self.tokenizer = self.processor.tokenizer
|
| 53 |
+
|
| 54 |
+
def chat(self, prompt, image):
|
| 55 |
+
"""Process an image or batch of images with the given prompt(s)"""
|
| 56 |
+
is_batch = isinstance(image, list)
|
| 57 |
+
|
| 58 |
+
if not is_batch:
|
| 59 |
+
images = [image]
|
| 60 |
+
prompts = [prompt]
|
| 61 |
+
else:
|
| 62 |
+
images = image
|
| 63 |
+
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
| 64 |
+
|
| 65 |
+
# Prepare image
|
| 66 |
+
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
|
| 67 |
+
batch_pixel_values = batch_inputs.pixel_values
|
| 68 |
+
|
| 69 |
+
if torch.cuda.is_available():
|
| 70 |
+
batch_pixel_values = batch_pixel_values.half().to(self.device)
|
| 71 |
+
else:
|
| 72 |
+
batch_pixel_values = batch_pixel_values.to(self.device)
|
| 73 |
+
|
| 74 |
+
# Prepare prompt
|
| 75 |
+
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
| 76 |
+
batch_prompt_inputs = self.tokenizer(
|
| 77 |
+
prompts,
|
| 78 |
+
add_special_tokens=False,
|
| 79 |
+
return_tensors="pt"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
|
| 83 |
+
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
|
| 84 |
+
|
| 85 |
+
# Generate text with memory-efficient settings
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
outputs = self.model.generate(
|
| 88 |
+
pixel_values=batch_pixel_values,
|
| 89 |
+
decoder_input_ids=batch_prompt_ids,
|
| 90 |
+
decoder_attention_mask=batch_attention_mask,
|
| 91 |
+
min_length=1,
|
| 92 |
+
max_length=2048, # Reduced for memory efficiency
|
| 93 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 94 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 95 |
+
use_cache=True,
|
| 96 |
+
bad_words_ids=[[self.tokenizer.unk_token_id]],
|
| 97 |
+
return_dict_in_generate=True,
|
| 98 |
+
do_sample=False,
|
| 99 |
+
num_beams=1,
|
| 100 |
+
repetition_penalty=1.1,
|
| 101 |
+
temperature=1.0
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Process output
|
| 105 |
+
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
| 106 |
+
|
| 107 |
+
# Clean prompt text from output
|
| 108 |
+
results = []
|
| 109 |
+
for i, sequence in enumerate(sequences):
|
| 110 |
+
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
| 111 |
+
results.append(cleaned)
|
| 112 |
+
|
| 113 |
+
if not is_batch:
|
| 114 |
+
return results[0]
|
| 115 |
+
return results
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def convert_pdf_to_images_gradio(pdf_file):
|
| 119 |
+
"""Convert uploaded PDF file to list of PIL Images"""
|
| 120 |
+
try:
|
| 121 |
+
import pymupdf
|
| 122 |
+
|
| 123 |
+
# Read the uploaded file
|
| 124 |
+
pdf_bytes = pdf_file.read()
|
| 125 |
+
|
| 126 |
+
# Open PDF from bytes
|
| 127 |
+
pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
|
| 128 |
+
|
| 129 |
+
images = []
|
| 130 |
+
for page_num in range(len(pdf_document)):
|
| 131 |
+
page = pdf_document[page_num]
|
| 132 |
+
|
| 133 |
+
# Render page to image with high DPI for better quality
|
| 134 |
+
mat = pymupdf.Matrix(2.0, 2.0) # 2x zoom for better quality
|
| 135 |
+
pix = page.get_pixmap(matrix=mat)
|
| 136 |
+
|
| 137 |
+
# Convert to PIL Image
|
| 138 |
+
img_data = pix.tobytes("png")
|
| 139 |
+
pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
|
| 140 |
+
images.append(pil_image)
|
| 141 |
+
|
| 142 |
+
pdf_document.close()
|
| 143 |
+
return images
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
raise Exception(f"Error converting PDF: {str(e)}")
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def process_pdf_document(pdf_file, model, progress=gr.Progress()):
|
| 150 |
+
"""Process uploaded PDF file page by page"""
|
| 151 |
+
if pdf_file is None:
|
| 152 |
+
return "No PDF file uploaded", [], {}
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
# Convert PDF to images
|
| 156 |
+
progress(0.1, desc="Converting PDF to images...")
|
| 157 |
+
images = convert_pdf_to_images_gradio(pdf_file)
|
| 158 |
+
|
| 159 |
+
if not images:
|
| 160 |
+
return "Failed to convert PDF to images", [], {}
|
| 161 |
+
|
| 162 |
+
# Process each page
|
| 163 |
+
all_results = []
|
| 164 |
+
page_previews = []
|
| 165 |
+
|
| 166 |
+
for page_idx, pil_image in enumerate(images):
|
| 167 |
+
progress((page_idx + 1) / len(images) * 0.8 + 0.1,
|
| 168 |
+
desc=f"Processing page {page_idx + 1}/{len(images)}...")
|
| 169 |
+
|
| 170 |
+
# Stage 1: Layout parsing
|
| 171 |
+
layout_output = model.chat("Parse the reading order of this document.", pil_image)
|
| 172 |
+
|
| 173 |
+
# Stage 2: Element processing with memory optimization
|
| 174 |
+
padded_image, dims = prepare_image(pil_image)
|
| 175 |
+
recognition_results = process_elements_optimized(
|
| 176 |
+
layout_output,
|
| 177 |
+
padded_image,
|
| 178 |
+
dims,
|
| 179 |
+
model,
|
| 180 |
+
max_batch_size=4 # Smaller batch size for memory efficiency
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Convert to markdown
|
| 184 |
+
try:
|
| 185 |
+
markdown_converter = MarkdownConverter()
|
| 186 |
+
markdown_content = markdown_converter.convert(recognition_results)
|
| 187 |
+
except:
|
| 188 |
+
# Fallback markdown generation
|
| 189 |
+
markdown_content = generate_fallback_markdown(recognition_results)
|
| 190 |
+
|
| 191 |
+
# Store page results
|
| 192 |
+
page_result = {
|
| 193 |
+
"page_number": page_idx + 1,
|
| 194 |
+
"layout_output": layout_output,
|
| 195 |
+
"elements": recognition_results,
|
| 196 |
+
"markdown": markdown_content
|
| 197 |
+
}
|
| 198 |
+
all_results.append(page_result)
|
| 199 |
+
|
| 200 |
+
# Create page preview with results
|
| 201 |
+
page_preview = {
|
| 202 |
+
"image": pil_image,
|
| 203 |
+
"page_num": page_idx + 1,
|
| 204 |
+
"element_count": len(recognition_results),
|
| 205 |
+
"markdown_preview": markdown_content[:500] + "..." if len(markdown_content) > 500 else markdown_content
|
| 206 |
+
}
|
| 207 |
+
page_previews.append(page_preview)
|
| 208 |
+
|
| 209 |
+
progress(1.0, desc="Processing complete!")
|
| 210 |
+
|
| 211 |
+
# Combine all markdown
|
| 212 |
+
combined_markdown = "\n\n---\n\n".join([
|
| 213 |
+
f"# Page {result['page_number']}\n\n{result['markdown']}"
|
| 214 |
+
for result in all_results
|
| 215 |
+
])
|
| 216 |
+
|
| 217 |
+
# Create summary JSON
|
| 218 |
+
summary_json = {
|
| 219 |
+
"total_pages": len(images),
|
| 220 |
+
"processing_status": "completed",
|
| 221 |
+
"pages": all_results,
|
| 222 |
+
"model_info": {
|
| 223 |
+
"device": model.device,
|
| 224 |
+
"total_elements": sum(len(page["elements"]) for page in all_results)
|
| 225 |
+
}
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
return combined_markdown, page_previews, summary_json
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
error_msg = f"Error processing PDF: {str(e)}"
|
| 232 |
+
return error_msg, [], {"error": error_msg}
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=4):
|
| 236 |
+
"""Optimized element processing for memory efficiency"""
|
| 237 |
+
layout_results = parse_layout_string(layout_results)
|
| 238 |
+
|
| 239 |
+
text_elements = []
|
| 240 |
+
table_elements = []
|
| 241 |
+
figure_results = []
|
| 242 |
+
previous_box = None
|
| 243 |
+
reading_order = 0
|
| 244 |
+
|
| 245 |
+
# Collect elements to process
|
| 246 |
+
for bbox, label in layout_results:
|
| 247 |
+
try:
|
| 248 |
+
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
| 249 |
+
bbox, padded_image, dims, previous_box
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
cropped = padded_image[y1:y2, x1:x2]
|
| 253 |
+
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
|
| 254 |
+
if label == "fig":
|
| 255 |
+
# Convert to base64 for figure display
|
| 256 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 257 |
+
pil_crop = crop_margin(pil_crop)
|
| 258 |
+
|
| 259 |
+
buffered = io.BytesIO()
|
| 260 |
+
pil_crop.save(buffered, format="PNG")
|
| 261 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode()
|
| 262 |
+
data_uri = f"data:image/png;base64,{img_base64}"
|
| 263 |
+
|
| 264 |
+
figure_results.append({
|
| 265 |
+
"label": label,
|
| 266 |
+
"text": f"",
|
| 267 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 268 |
+
"reading_order": reading_order,
|
| 269 |
+
})
|
| 270 |
+
else:
|
| 271 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 272 |
+
element_info = {
|
| 273 |
+
"crop": pil_crop,
|
| 274 |
+
"label": label,
|
| 275 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 276 |
+
"reading_order": reading_order,
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
if label == "tab":
|
| 280 |
+
table_elements.append(element_info)
|
| 281 |
+
else:
|
| 282 |
+
text_elements.append(element_info)
|
| 283 |
+
|
| 284 |
+
reading_order += 1
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
print(f"Error processing element {label}: {str(e)}")
|
| 288 |
+
continue
|
| 289 |
+
|
| 290 |
+
# Process elements in small batches
|
| 291 |
+
recognition_results = figure_results.copy()
|
| 292 |
+
|
| 293 |
+
if text_elements:
|
| 294 |
+
text_results = process_element_batch_optimized(
|
| 295 |
+
text_elements, model, "Read text in the image.", max_batch_size
|
| 296 |
+
)
|
| 297 |
+
recognition_results.extend(text_results)
|
| 298 |
+
|
| 299 |
+
if table_elements:
|
| 300 |
+
table_results = process_element_batch_optimized(
|
| 301 |
+
table_elements, model, "Parse the table in the image.", max_batch_size
|
| 302 |
+
)
|
| 303 |
+
recognition_results.extend(table_results)
|
| 304 |
+
|
| 305 |
+
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
| 306 |
+
return recognition_results
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def process_element_batch_optimized(elements, model, prompt, max_batch_size=4):
|
| 310 |
+
"""Process elements in small batches for memory efficiency"""
|
| 311 |
+
results = []
|
| 312 |
+
batch_size = min(len(elements), max_batch_size)
|
| 313 |
+
|
| 314 |
+
for i in range(0, len(elements), batch_size):
|
| 315 |
+
batch_elements = elements[i:i+batch_size]
|
| 316 |
+
crops_list = [elem["crop"] for elem in batch_elements]
|
| 317 |
+
prompts_list = [prompt] * len(crops_list)
|
| 318 |
+
|
| 319 |
+
# Process batch
|
| 320 |
+
batch_results = model.chat(prompts_list, crops_list)
|
| 321 |
+
|
| 322 |
+
for j, result in enumerate(batch_results):
|
| 323 |
+
elem = batch_elements[j]
|
| 324 |
+
results.append({
|
| 325 |
+
"label": elem["label"],
|
| 326 |
+
"bbox": elem["bbox"],
|
| 327 |
+
"text": result.strip(),
|
| 328 |
+
"reading_order": elem["reading_order"],
|
| 329 |
+
})
|
| 330 |
+
|
| 331 |
+
# Clear memory
|
| 332 |
+
del crops_list, batch_elements
|
| 333 |
+
if torch.cuda.is_available():
|
| 334 |
+
torch.cuda.empty_cache()
|
| 335 |
+
|
| 336 |
+
return results
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def generate_fallback_markdown(recognition_results):
|
| 340 |
+
"""Generate basic markdown if converter fails"""
|
| 341 |
+
markdown_content = ""
|
| 342 |
+
for element in recognition_results:
|
| 343 |
+
if element["label"] == "tab":
|
| 344 |
+
markdown_content += f"\n\n{element['text']}\n\n"
|
| 345 |
+
elif element["label"] in ["para", "title", "sec", "sub_sec"]:
|
| 346 |
+
markdown_content += f"{element['text']}\n\n"
|
| 347 |
+
elif element["label"] == "fig":
|
| 348 |
+
markdown_content += f"{element['text']}\n\n"
|
| 349 |
+
return markdown_content
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def create_page_gallery(page_previews):
|
| 353 |
+
"""Create a gallery view of processed pages"""
|
| 354 |
+
if not page_previews:
|
| 355 |
+
return "No pages processed yet."
|
| 356 |
+
|
| 357 |
+
gallery_html = "<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px;'>"
|
| 358 |
+
|
| 359 |
+
for preview in page_previews:
|
| 360 |
+
gallery_html += f"""
|
| 361 |
+
<div style='border: 1px solid #ddd; padding: 15px; border-radius: 8px;'>
|
| 362 |
+
<h3>Page {preview['page_num']}</h3>
|
| 363 |
+
<p><strong>Elements found:</strong> {preview['element_count']}</p>
|
| 364 |
+
<div style='max-height: 200px; overflow-y: auto; background: #f5f5f5; padding: 10px; border-radius: 4px; font-size: 12px;'>
|
| 365 |
+
{preview['markdown_preview']}
|
| 366 |
+
</div>
|
| 367 |
+
</div>
|
| 368 |
+
"""
|
| 369 |
+
|
| 370 |
+
gallery_html += "</div>"
|
| 371 |
+
return gallery_html
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
# Initialize model
|
| 375 |
+
model_path = "./hf_model"
|
| 376 |
+
if not os.path.exists(model_path):
|
| 377 |
+
model_path = "ByteDance/DOLPHIN"
|
| 378 |
+
|
| 379 |
+
try:
|
| 380 |
+
dolphin_model = DOLPHIN(model_path)
|
| 381 |
+
print(f"Model loaded successfully from {model_path}")
|
| 382 |
+
model_status = f"β
Model loaded: {model_path} (Device: {dolphin_model.device})"
|
| 383 |
+
except Exception as e:
|
| 384 |
+
print(f"Error loading model: {e}")
|
| 385 |
+
dolphin_model = None
|
| 386 |
+
model_status = f"β Model failed to load: {str(e)}"
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
| 390 |
+
"""Main processing function for uploaded PDF"""
|
| 391 |
+
if dolphin_model is None:
|
| 392 |
+
return "Model not loaded", "Model not loaded", {}, "Model not loaded"
|
| 393 |
+
|
| 394 |
+
if pdf_file is None:
|
| 395 |
+
return "No PDF uploaded", "No PDF uploaded", {}, "No PDF uploaded"
|
| 396 |
+
|
| 397 |
+
try:
|
| 398 |
+
# Process the PDF
|
| 399 |
+
combined_markdown, page_previews, summary_json = process_pdf_document(
|
| 400 |
+
pdf_file, dolphin_model, progress
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
# Create page gallery
|
| 404 |
+
gallery_html = create_page_gallery(page_previews)
|
| 405 |
+
|
| 406 |
+
return combined_markdown, combined_markdown, summary_json, gallery_html
|
| 407 |
+
|
| 408 |
+
except Exception as e:
|
| 409 |
+
error_msg = f"Error processing PDF: {str(e)}"
|
| 410 |
+
return error_msg, error_msg, {"error": error_msg}, error_msg
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def clear_all():
|
| 414 |
+
"""Clear all inputs and outputs"""
|
| 415 |
+
return None, "", "", {}, ""
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
# Create Gradio interface optimized for HuggingFace Spaces
|
| 419 |
+
with gr.Blocks(
|
| 420 |
+
title="DOLPHIN PDF Document AI",
|
| 421 |
+
theme=gr.themes.Soft(),
|
| 422 |
+
css="""
|
| 423 |
+
.main-container { max-width: 1200px; margin: 0 auto; }
|
| 424 |
+
.status-box { padding: 10px; border-radius: 5px; margin: 10px 0; }
|
| 425 |
+
.success { background-color: #d4edda; border: 1px solid #c3e6cb; }
|
| 426 |
+
.error { background-color: #f8d7da; border: 1px solid #f5c6cb; }
|
| 427 |
+
"""
|
| 428 |
+
) as demo:
|
| 429 |
+
gr.Markdown("# π¬ DOLPHIN PDF Document AI")
|
| 430 |
+
gr.Markdown(
|
| 431 |
+
"Upload a PDF document and process it page by page with the DOLPHIN model. "
|
| 432 |
+
"Optimized for HuggingFace Spaces deployment."
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
# Model status
|
| 436 |
+
gr.Markdown(f"**Model Status:** {model_status}")
|
| 437 |
+
|
| 438 |
+
with gr.Row():
|
| 439 |
+
# Left column: Upload and controls
|
| 440 |
+
with gr.Column(scale=1):
|
| 441 |
+
gr.Markdown("### π Upload PDF Document")
|
| 442 |
+
pdf_input = gr.File(
|
| 443 |
+
file_types=[".pdf"],
|
| 444 |
+
label="Select PDF File",
|
| 445 |
+
height=200
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
with gr.Row():
|
| 449 |
+
process_btn = gr.Button("π Process PDF", variant="primary", size="lg")
|
| 450 |
+
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
| 451 |
+
|
| 452 |
+
# Right column: Results tabs
|
| 453 |
+
with gr.Column(scale=2):
|
| 454 |
+
gr.Markdown("### π Processing Results")
|
| 455 |
+
|
| 456 |
+
with gr.Tabs():
|
| 457 |
+
with gr.TabItem("π Markdown Output"):
|
| 458 |
+
markdown_output = gr.Markdown(
|
| 459 |
+
label="Processed Document",
|
| 460 |
+
latex_delimiters=[
|
| 461 |
+
{"left": "$$", "right": "$$", "display": True},
|
| 462 |
+
{"left": "$", "right": "$", "display": False}
|
| 463 |
+
],
|
| 464 |
+
height=600
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
with gr.TabItem("π Raw Markdown"):
|
| 468 |
+
raw_markdown = gr.Code(
|
| 469 |
+
label="Raw Markdown Text",
|
| 470 |
+
language="markdown",
|
| 471 |
+
lines=25,
|
| 472 |
+
height=600
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
with gr.TabItem("π Page Gallery"):
|
| 476 |
+
page_gallery = gr.HTML(
|
| 477 |
+
label="Page Overview",
|
| 478 |
+
height=600
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
with gr.TabItem("π§ JSON Details"):
|
| 482 |
+
json_output = gr.JSON(
|
| 483 |
+
label="Processing Details",
|
| 484 |
+
height=600
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
# Progress bar
|
| 488 |
+
progress_bar = gr.HTML(visible=False)
|
| 489 |
+
|
| 490 |
+
# Event handlers
|
| 491 |
+
process_btn.click(
|
| 492 |
+
fn=process_uploaded_pdf,
|
| 493 |
+
inputs=[pdf_input],
|
| 494 |
+
outputs=[markdown_output, raw_markdown, json_output, page_gallery],
|
| 495 |
+
show_progress=True
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
clear_btn.click(
|
| 499 |
+
fn=clear_all,
|
| 500 |
+
outputs=[pdf_input, markdown_output, raw_markdown, json_output, page_gallery]
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
# Footer
|
| 504 |
+
gr.Markdown(
|
| 505 |
+
"---\n"
|
| 506 |
+
"**Note:** This app is optimized for NVIDIA T4 deployment on HuggingFace Spaces. "
|
| 507 |
+
"Processing time depends on document complexity and page count."
|
| 508 |
+
)
|
| 509 |
|
|
|
|
|
|
|
| 510 |
|
| 511 |
if __name__ == "__main__":
|
|
|
|
| 512 |
demo.launch(
|
| 513 |
server_name="0.0.0.0",
|
| 514 |
server_port=7860,
|
| 515 |
share=False,
|
| 516 |
show_error=True,
|
| 517 |
+
enable_queue=True, # Enable queue for better performance
|
| 518 |
+
max_threads=2, # Limit threads for memory efficiency
|
|
|
|
| 519 |
inbrowser=False,
|
| 520 |
show_tips=False,
|
| 521 |
quiet=True
|