Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
PromptWizard โ Qwen2.5-0.5B Fine-tuning on Bhagavad Gita Dataset
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
import gradio as gr
|
|
@@ -15,59 +15,90 @@ from transformers import (
|
|
| 15 |
TrainingArguments,
|
| 16 |
)
|
| 17 |
from peft import LoraConfig, get_peft_model, TaskType
|
| 18 |
-
from huggingface_hub import HfApi
|
| 19 |
import os
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
# ------------------------------------------------------
|
| 23 |
-
# ๐ง
|
| 24 |
# ------------------------------------------------------
|
| 25 |
def check_gpu_status():
|
| 26 |
-
return "๐ข Ready โ GPU will be
|
| 27 |
|
| 28 |
|
| 29 |
# ------------------------------------------------------
|
| 30 |
-
#
|
| 31 |
# ------------------------------------------------------
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.Progress()):
|
| 34 |
-
|
| 35 |
try:
|
|
|
|
| 36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
-
|
| 38 |
|
| 39 |
# ------------------------------------------------------
|
| 40 |
-
# ๐
|
| 41 |
# ------------------------------------------------------
|
| 42 |
-
progress(0.1, desc="
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
dataset
|
| 47 |
-
|
| 48 |
-
)
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
if not all(c in dataset.column_names for c in ["question", "answer"]):
|
| 52 |
-
raise ValueError("CSV must contain columns: 'question' and 'answer'")
|
| 53 |
|
| 54 |
def format_row(row):
|
| 55 |
return {
|
| 56 |
-
"text": f"<|system|>\nYou are a spiritual
|
| 57 |
f"<|user|>\n{row['question']}\n"
|
| 58 |
f"<|assistant|>\n{row['answer']}"
|
| 59 |
}
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
# ------------------------------------------------------
|
| 65 |
-
# ๐ค Load
|
| 66 |
# ------------------------------------------------------
|
| 67 |
-
progress(0.3, desc="Loading model
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
model_name = "Qwen/Qwen2.5-0.5B" # safest base model for Zero GPU
|
| 71 |
|
| 72 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 73 |
if tokenizer.pad_token is None:
|
|
@@ -77,14 +108,12 @@ def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.P
|
|
| 77 |
model_name,
|
| 78 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 79 |
)
|
| 80 |
-
|
| 81 |
if device == "cuda":
|
| 82 |
model = model.to(device)
|
| 83 |
-
|
| 84 |
-
log.append("โ
Model & tokenizer loaded successfully")
|
| 85 |
|
| 86 |
# ------------------------------------------------------
|
| 87 |
-
# โ๏ธ
|
| 88 |
# ------------------------------------------------------
|
| 89 |
progress(0.4, desc="Configuring LoRA...")
|
| 90 |
lora_config = LoraConfig(
|
|
@@ -96,31 +125,28 @@ def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.P
|
|
| 96 |
)
|
| 97 |
model = get_peft_model(model, lora_config)
|
| 98 |
|
| 99 |
-
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 100 |
-
total_params = sum(p.numel() for p in model.parameters())
|
| 101 |
-
log.append(f"๐งฉ Trainable params: {trainable_params:,} / {total_params:,}")
|
| 102 |
-
|
| 103 |
# ------------------------------------------------------
|
| 104 |
-
# โ๏ธ Tokenize
|
| 105 |
# ------------------------------------------------------
|
| 106 |
-
progress(0.5, desc="Tokenizing
|
| 107 |
|
| 108 |
-
def tokenize_fn(
|
| 109 |
return tokenizer(
|
| 110 |
-
|
| 111 |
-
padding="max_length",
|
| 112 |
truncation=True,
|
|
|
|
| 113 |
max_length=512,
|
| 114 |
)
|
| 115 |
|
| 116 |
-
tokenized =
|
|
|
|
| 117 |
|
| 118 |
# ------------------------------------------------------
|
| 119 |
-
# ๐ฏ
|
| 120 |
# ------------------------------------------------------
|
| 121 |
progress(0.6, desc="Configuring training...")
|
| 122 |
training_args = TrainingArguments(
|
| 123 |
-
output_dir="
|
| 124 |
num_train_epochs=num_epochs,
|
| 125 |
per_device_train_batch_size=batch_size,
|
| 126 |
gradient_accumulation_steps=2,
|
|
@@ -129,15 +155,15 @@ def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.P
|
|
| 129 |
logging_steps=5,
|
| 130 |
save_strategy="no",
|
| 131 |
fp16=device == "cuda",
|
| 132 |
-
max_steps=100,
|
| 133 |
report_to="none",
|
| 134 |
)
|
| 135 |
|
| 136 |
# ------------------------------------------------------
|
| 137 |
-
# ๐๏ธ Train
|
| 138 |
# ------------------------------------------------------
|
| 139 |
-
progress(0.7, desc="Training
|
| 140 |
-
|
| 141 |
|
| 142 |
trainer = Trainer(
|
| 143 |
model=model,
|
|
@@ -147,29 +173,28 @@ def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.P
|
|
| 147 |
)
|
| 148 |
trainer.train()
|
| 149 |
|
| 150 |
-
progress(0.9, desc="Finalizing and saving...")
|
| 151 |
-
|
| 152 |
# ------------------------------------------------------
|
| 153 |
-
# ๐พ Save
|
| 154 |
# ------------------------------------------------------
|
| 155 |
-
|
|
|
|
| 156 |
os.makedirs(output_dir, exist_ok=True)
|
| 157 |
model.save_pretrained(output_dir)
|
| 158 |
tokenizer.save_pretrained(output_dir)
|
| 159 |
|
| 160 |
-
|
| 161 |
-
api = HfApi()
|
| 162 |
repo_id = "rahul7star/Qwen0.5-3B-Gita"
|
|
|
|
| 163 |
api.upload_folder(folder_path=output_dir, repo_id=repo_id)
|
| 164 |
-
|
| 165 |
|
| 166 |
progress(1.0, desc="Complete!")
|
| 167 |
-
|
| 168 |
|
| 169 |
except Exception as e:
|
| 170 |
-
|
| 171 |
|
| 172 |
-
return "\n".join(
|
| 173 |
|
| 174 |
|
| 175 |
# ------------------------------------------------------
|
|
@@ -178,9 +203,9 @@ def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.P
|
|
| 178 |
def create_interface():
|
| 179 |
with gr.Blocks(title="PromptWizard โ Qwen Gita Trainer") as demo:
|
| 180 |
gr.Markdown("""
|
| 181 |
-
# ๐ง
|
| 182 |
-
|
| 183 |
-
|
| 184 |
""")
|
| 185 |
|
| 186 |
with gr.Row():
|
|
@@ -188,11 +213,11 @@ def create_interface():
|
|
| 188 |
gpu_status = gr.Textbox(
|
| 189 |
label="GPU Status",
|
| 190 |
value=check_gpu_status(),
|
| 191 |
-
interactive=False
|
| 192 |
)
|
| 193 |
model_name = gr.Textbox(
|
| 194 |
value="Qwen/Qwen2.5-0.5B",
|
| 195 |
-
visible=False
|
| 196 |
)
|
| 197 |
num_epochs = gr.Slider(1, 3, 1, step=1, label="Epochs")
|
| 198 |
batch_size = gr.Slider(1, 4, 2, step=1, label="Batch Size")
|
|
@@ -204,7 +229,7 @@ def create_interface():
|
|
| 204 |
label="Training Logs",
|
| 205 |
lines=25,
|
| 206 |
max_lines=40,
|
| 207 |
-
value="
|
| 208 |
)
|
| 209 |
|
| 210 |
train_btn.click(
|
|
@@ -215,17 +240,17 @@ def create_interface():
|
|
| 215 |
|
| 216 |
gr.Markdown("""
|
| 217 |
---
|
| 218 |
-
|
| 219 |
-
-
|
| 220 |
-
-
|
| 221 |
-
-
|
| 222 |
""")
|
| 223 |
|
| 224 |
return demo
|
| 225 |
|
| 226 |
|
| 227 |
# ------------------------------------------------------
|
| 228 |
-
# ๐ช Launch
|
| 229 |
# ------------------------------------------------------
|
| 230 |
if __name__ == "__main__":
|
| 231 |
demo = create_interface()
|
|
|
|
| 1 |
"""
|
| 2 |
PromptWizard โ Qwen2.5-0.5B Fine-tuning on Bhagavad Gita Dataset
|
| 3 |
+
Downloads CSV locally before training (for Hugging Face Spaces)
|
| 4 |
"""
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
| 15 |
TrainingArguments,
|
| 16 |
)
|
| 17 |
from peft import LoraConfig, get_peft_model, TaskType
|
| 18 |
+
from huggingface_hub import snapshot_download, HfApi
|
| 19 |
import os
|
| 20 |
+
import shutil
|
| 21 |
|
| 22 |
|
| 23 |
# ------------------------------------------------------
|
| 24 |
+
# ๐ง GPU check
|
| 25 |
# ------------------------------------------------------
|
| 26 |
def check_gpu_status():
|
| 27 |
+
return "๐ข Ready โ GPU will be assigned at runtime (Zero GPU mode)"
|
| 28 |
|
| 29 |
|
| 30 |
# ------------------------------------------------------
|
| 31 |
+
# ๐งฉ Download Dataset to /tmp/
|
| 32 |
# ------------------------------------------------------
|
| 33 |
+
def download_gita_dataset():
|
| 34 |
+
repo_id = "rahul7star/Gita"
|
| 35 |
+
local_dir = "/tmp/gita_data"
|
| 36 |
+
|
| 37 |
+
if os.path.exists(local_dir):
|
| 38 |
+
shutil.rmtree(local_dir)
|
| 39 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 40 |
+
|
| 41 |
+
print(f"๐ฅ Downloading dataset from {repo_id} ...")
|
| 42 |
+
snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type="dataset")
|
| 43 |
+
|
| 44 |
+
# Try to locate the CSV file
|
| 45 |
+
csv_path = None
|
| 46 |
+
for root, _, files in os.walk(local_dir):
|
| 47 |
+
for f in files:
|
| 48 |
+
if f.lower().endswith(".csv"):
|
| 49 |
+
csv_path = os.path.join(root, f)
|
| 50 |
+
break
|
| 51 |
+
if not csv_path:
|
| 52 |
+
raise FileNotFoundError("No CSV file found in the Gita dataset repository.")
|
| 53 |
+
|
| 54 |
+
print(f"โ
Found CSV: {csv_path}")
|
| 55 |
+
return csv_path
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# ------------------------------------------------------
|
| 59 |
+
# ๐ Training function
|
| 60 |
+
# ------------------------------------------------------
|
| 61 |
+
@spaces.GPU(duration=300)
|
| 62 |
def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.Progress()):
|
| 63 |
+
logs = []
|
| 64 |
try:
|
| 65 |
+
progress(0.05, desc="Initializing...")
|
| 66 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 67 |
+
logs.append(f"๐ฎ Device: {device}")
|
| 68 |
|
| 69 |
# ------------------------------------------------------
|
| 70 |
+
# ๐ Step 1: Download dataset
|
| 71 |
# ------------------------------------------------------
|
| 72 |
+
progress(0.1, desc="Downloading dataset...")
|
| 73 |
+
logs.append("\n๐ฅ Downloading Gita dataset from HF Hub...")
|
| 74 |
+
csv_path = download_gita_dataset()
|
| 75 |
|
| 76 |
+
# ------------------------------------------------------
|
| 77 |
+
# ๐งพ Step 2: Load dataset from CSV
|
| 78 |
+
# ------------------------------------------------------
|
| 79 |
+
progress(0.2, desc="Loading dataset...")
|
| 80 |
+
df = pd.read_csv(csv_path)
|
| 81 |
+
if not all(c in df.columns for c in ["question", "answer"]):
|
| 82 |
+
raise ValueError("CSV must contain 'question' and 'answer' columns.")
|
| 83 |
|
| 84 |
+
hf_dataset = Dataset.from_pandas(df)
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def format_row(row):
|
| 87 |
return {
|
| 88 |
+
"text": f"<|system|>\nYou are a spiritual guide explaining Gita concepts.\n"
|
| 89 |
f"<|user|>\n{row['question']}\n"
|
| 90 |
f"<|assistant|>\n{row['answer']}"
|
| 91 |
}
|
| 92 |
|
| 93 |
+
hf_dataset = hf_dataset.map(format_row)
|
| 94 |
+
logs.append(f"โ
Loaded {len(hf_dataset)} examples from {csv_path}")
|
| 95 |
|
| 96 |
# ------------------------------------------------------
|
| 97 |
+
# ๐ค Step 3: Load model + tokenizer
|
| 98 |
# ------------------------------------------------------
|
| 99 |
+
progress(0.3, desc="Loading Qwen model...")
|
| 100 |
+
model_name = "Qwen/Qwen2.5-0.5B"
|
| 101 |
+
logs.append(f"\n๐ Loading base model: {model_name}")
|
|
|
|
| 102 |
|
| 103 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 104 |
if tokenizer.pad_token is None:
|
|
|
|
| 108 |
model_name,
|
| 109 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 110 |
)
|
|
|
|
| 111 |
if device == "cuda":
|
| 112 |
model = model.to(device)
|
| 113 |
+
logs.append("โ
Model and tokenizer ready")
|
|
|
|
| 114 |
|
| 115 |
# ------------------------------------------------------
|
| 116 |
+
# โ๏ธ Step 4: Apply LoRA config
|
| 117 |
# ------------------------------------------------------
|
| 118 |
progress(0.4, desc="Configuring LoRA...")
|
| 119 |
lora_config = LoraConfig(
|
|
|
|
| 125 |
)
|
| 126 |
model = get_peft_model(model, lora_config)
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
# ------------------------------------------------------
|
| 129 |
+
# โ๏ธ Step 5: Tokenize dataset
|
| 130 |
# ------------------------------------------------------
|
| 131 |
+
progress(0.5, desc="Tokenizing data...")
|
| 132 |
|
| 133 |
+
def tokenize_fn(batch):
|
| 134 |
return tokenizer(
|
| 135 |
+
batch["text"],
|
|
|
|
| 136 |
truncation=True,
|
| 137 |
+
padding="max_length",
|
| 138 |
max_length=512,
|
| 139 |
)
|
| 140 |
|
| 141 |
+
tokenized = hf_dataset.map(tokenize_fn, batched=True)
|
| 142 |
+
logs.append("๐งพ Dataset tokenized successfully")
|
| 143 |
|
| 144 |
# ------------------------------------------------------
|
| 145 |
+
# ๐ฏ Step 6: Training arguments
|
| 146 |
# ------------------------------------------------------
|
| 147 |
progress(0.6, desc="Configuring training...")
|
| 148 |
training_args = TrainingArguments(
|
| 149 |
+
output_dir="/tmp/qwen-gita-output",
|
| 150 |
num_train_epochs=num_epochs,
|
| 151 |
per_device_train_batch_size=batch_size,
|
| 152 |
gradient_accumulation_steps=2,
|
|
|
|
| 155 |
logging_steps=5,
|
| 156 |
save_strategy="no",
|
| 157 |
fp16=device == "cuda",
|
| 158 |
+
max_steps=100,
|
| 159 |
report_to="none",
|
| 160 |
)
|
| 161 |
|
| 162 |
# ------------------------------------------------------
|
| 163 |
+
# ๐๏ธ Step 7: Train model
|
| 164 |
# ------------------------------------------------------
|
| 165 |
+
progress(0.7, desc="Training in progress...")
|
| 166 |
+
logs.append("\n๐ Starting fine-tuning...")
|
| 167 |
|
| 168 |
trainer = Trainer(
|
| 169 |
model=model,
|
|
|
|
| 173 |
)
|
| 174 |
trainer.train()
|
| 175 |
|
|
|
|
|
|
|
| 176 |
# ------------------------------------------------------
|
| 177 |
+
# ๐พ Step 8: Save + Upload
|
| 178 |
# ------------------------------------------------------
|
| 179 |
+
progress(0.9, desc="Saving and uploading...")
|
| 180 |
+
output_dir = "/tmp/qwen-gita-lora"
|
| 181 |
os.makedirs(output_dir, exist_ok=True)
|
| 182 |
model.save_pretrained(output_dir)
|
| 183 |
tokenizer.save_pretrained(output_dir)
|
| 184 |
|
| 185 |
+
logs.append("\n๐ค Uploading fine-tuned LoRA model to Hugging Face Hub...")
|
|
|
|
| 186 |
repo_id = "rahul7star/Qwen0.5-3B-Gita"
|
| 187 |
+
api = HfApi()
|
| 188 |
api.upload_folder(folder_path=output_dir, repo_id=repo_id)
|
| 189 |
+
logs.append(f"โ
Uploaded fine-tuned model to {repo_id}")
|
| 190 |
|
| 191 |
progress(1.0, desc="Complete!")
|
| 192 |
+
logs.append("\n๐ Training complete!")
|
| 193 |
|
| 194 |
except Exception as e:
|
| 195 |
+
logs.append(f"\nโ Error: {str(e)}")
|
| 196 |
|
| 197 |
+
return "\n".join(logs)
|
| 198 |
|
| 199 |
|
| 200 |
# ------------------------------------------------------
|
|
|
|
| 203 |
def create_interface():
|
| 204 |
with gr.Blocks(title="PromptWizard โ Qwen Gita Trainer") as demo:
|
| 205 |
gr.Markdown("""
|
| 206 |
+
# ๐ง PromptWizard โ Qwen2.5-0.5B Gita Trainer
|
| 207 |
+
Fine-tune Qwen 0.5B on your **Bhagavad Gita CSV dataset**
|
| 208 |
+
Automatically uploads LoRA weights to `rahul7star/Qwen0.5-3B-Gita`
|
| 209 |
""")
|
| 210 |
|
| 211 |
with gr.Row():
|
|
|
|
| 213 |
gpu_status = gr.Textbox(
|
| 214 |
label="GPU Status",
|
| 215 |
value=check_gpu_status(),
|
| 216 |
+
interactive=False,
|
| 217 |
)
|
| 218 |
model_name = gr.Textbox(
|
| 219 |
value="Qwen/Qwen2.5-0.5B",
|
| 220 |
+
visible=False,
|
| 221 |
)
|
| 222 |
num_epochs = gr.Slider(1, 3, 1, step=1, label="Epochs")
|
| 223 |
batch_size = gr.Slider(1, 4, 2, step=1, label="Batch Size")
|
|
|
|
| 229 |
label="Training Logs",
|
| 230 |
lines=25,
|
| 231 |
max_lines=40,
|
| 232 |
+
value="Click 'Start Fine-tuning' to train on Bhagavad Gita dataset...",
|
| 233 |
)
|
| 234 |
|
| 235 |
train_btn.click(
|
|
|
|
| 240 |
|
| 241 |
gr.Markdown("""
|
| 242 |
---
|
| 243 |
+
**Notes:**
|
| 244 |
+
- Downloads dataset: `rahul7star/Gita` โ `/tmp/gita_data/Gita.csv`
|
| 245 |
+
- Trains using LoRA for efficiency
|
| 246 |
+
- Uploads to `rahul7star/Qwen0.5-3B-Gita`
|
| 247 |
""")
|
| 248 |
|
| 249 |
return demo
|
| 250 |
|
| 251 |
|
| 252 |
# ------------------------------------------------------
|
| 253 |
+
# ๐ช Launch app
|
| 254 |
# ------------------------------------------------------
|
| 255 |
if __name__ == "__main__":
|
| 256 |
demo = create_interface()
|