Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,188 +1,186 @@
|
|
| 1 |
"""
|
| 2 |
-
PromptWizard
|
| 3 |
-
|
| 4 |
-
Uploads trained model to rahul7star/Qwen0.5-3B-Gita
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
import torch
|
|
|
|
|
|
|
| 10 |
from transformers import (
|
| 11 |
-
AutoModelForCausalLM,
|
| 12 |
AutoTokenizer,
|
|
|
|
| 13 |
Trainer,
|
| 14 |
TrainingArguments,
|
| 15 |
)
|
| 16 |
-
from datasets import load_dataset
|
| 17 |
from peft import LoraConfig, get_peft_model, TaskType
|
| 18 |
-
from huggingface_hub import HfApi
|
| 19 |
-
import os
|
| 20 |
|
| 21 |
|
| 22 |
-
#
|
|
|
|
|
|
|
| 23 |
def check_gpu_status():
|
| 24 |
-
return "
|
| 25 |
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.Progress()):
|
| 30 |
-
|
| 31 |
-
output_log = []
|
| 32 |
-
|
| 33 |
try:
|
| 34 |
-
# ==== Device ====
|
| 35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
-
|
| 37 |
-
if device == "cuda":
|
| 38 |
-
output_log.append(f"✅ GPU: {torch.cuda.get_device_name(0)}")
|
| 39 |
-
|
| 40 |
-
# ==== Load dataset ====
|
| 41 |
-
progress(0.1, desc="Loading rahul7star/Gita dataset...")
|
| 42 |
-
output_log.append("\n📚 Loading dataset from rahul7star/Gita...")
|
| 43 |
-
|
| 44 |
-
dataset = load_dataset("rahul7star/Gita", split="train")
|
| 45 |
-
output_log.append(f" Loaded {len(dataset)} samples")
|
| 46 |
-
output_log.append(f" Columns: {dataset.column_names}")
|
| 47 |
-
|
| 48 |
-
# ==== Format dataset ====
|
| 49 |
-
def format_example(item):
|
| 50 |
-
text = (
|
| 51 |
-
item.get("text")
|
| 52 |
-
or item.get("content")
|
| 53 |
-
or " ".join(str(v) for v in item.values())
|
| 54 |
-
)
|
| 55 |
-
prompt = f"""<|system|>
|
| 56 |
-
You are a wise teacher interpreting Bhagavad Gita with deep insights.
|
| 57 |
-
<|user|>
|
| 58 |
-
{text}
|
| 59 |
-
<|assistant|>
|
| 60 |
-
"""
|
| 61 |
-
return {"text": prompt}
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
progress(0.3, desc="Loading model and tokenizer...")
|
| 69 |
-
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
model_name = "Qwen/Qwen2.5-0.5B" # Use smallest model for Zero GPU
|
| 73 |
-
output_log.append(" Note: Using 0.5B model for Zero GPU compatibility")
|
| 74 |
|
| 75 |
-
# ✅ Correct tokenizer and model loading
|
| 76 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 77 |
-
|
| 78 |
-
# Fix for padding token (Qwen sometimes lacks it)
|
| 79 |
if tokenizer.pad_token is None:
|
| 80 |
tokenizer.pad_token = tokenizer.eos_token
|
| 81 |
|
| 82 |
model = AutoModelForCausalLM.from_pretrained(
|
| 83 |
-
|
| 84 |
-
|
| 85 |
)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
model = model.to(device)
|
| 90 |
|
| 91 |
-
|
| 92 |
-
# ==== LoRA ====
|
| 93 |
-
progress(0.4, desc="Configuring LoRA...")
|
| 94 |
-
output_log.append("\n⚙️ Setting up LoRA for efficient fine-tuning...")
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
lora_config = LoraConfig(
|
| 97 |
task_type=TaskType.CAUSAL_LM,
|
| 98 |
r=8,
|
| 99 |
lora_alpha=16,
|
| 100 |
lora_dropout=0.1,
|
| 101 |
target_modules=["q_proj", "v_proj"],
|
| 102 |
-
bias="none",
|
| 103 |
)
|
| 104 |
model = get_peft_model(model, lora_config)
|
| 105 |
|
| 106 |
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
#
|
|
|
|
|
|
|
| 110 |
progress(0.5, desc="Tokenizing dataset...")
|
|
|
|
| 111 |
def tokenize_fn(examples):
|
| 112 |
return tokenizer(
|
| 113 |
examples["text"],
|
| 114 |
padding="max_length",
|
| 115 |
truncation=True,
|
| 116 |
-
max_length=
|
| 117 |
)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
output_log.append(" ✅ Tokenization done")
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 125 |
training_args = TrainingArguments(
|
| 126 |
-
output_dir=
|
| 127 |
num_train_epochs=num_epochs,
|
| 128 |
per_device_train_batch_size=batch_size,
|
| 129 |
gradient_accumulation_steps=2,
|
| 130 |
-
|
|
|
|
| 131 |
logging_steps=5,
|
| 132 |
-
save_strategy="
|
| 133 |
fp16=device == "cuda",
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
max_steps=100,
|
| 137 |
)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
trainer = Trainer(
|
| 140 |
model=model,
|
| 141 |
args=training_args,
|
| 142 |
-
train_dataset=
|
| 143 |
tokenizer=tokenizer,
|
| 144 |
)
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
progress(0.7, desc="Training...")
|
| 148 |
-
output_log.append("\n🚀 Starting training...\n" + "=" * 50)
|
| 149 |
-
train_result = trainer.train()
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
| 154 |
tokenizer.save_pretrained(output_dir)
|
| 155 |
|
| 156 |
-
|
| 157 |
-
progress(0.9, desc="Uploading to Hugging Face Hub...")
|
| 158 |
-
hf_repo = "rahul7star/Qwen0.5-3B-Gita"
|
| 159 |
-
output_log.append(f"\n☁️ Uploading fine-tuned model to: {hf_repo}")
|
| 160 |
-
|
| 161 |
api = HfApi()
|
| 162 |
-
|
| 163 |
-
api.
|
| 164 |
-
|
| 165 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
| 166 |
-
repo = Repository(local_dir=tmpdir, clone_from=hf_repo, use_auth_token=token)
|
| 167 |
-
shutil.copytree(output_dir, tmpdir, dirs_exist_ok=True)
|
| 168 |
-
repo.push_to_hub(commit_message="Upload fine-tuned Qwen-Gita model")
|
| 169 |
|
| 170 |
progress(1.0, desc="Complete!")
|
| 171 |
-
|
| 172 |
|
| 173 |
except Exception as e:
|
| 174 |
-
|
| 175 |
|
| 176 |
-
return "\n".join(
|
| 177 |
|
| 178 |
|
| 179 |
-
#
|
|
|
|
|
|
|
| 180 |
def create_interface():
|
| 181 |
with gr.Blocks(title="PromptWizard — Qwen Gita Trainer") as demo:
|
| 182 |
gr.Markdown("""
|
| 183 |
-
# 🧘 Qwen Fine-
|
| 184 |
-
|
| 185 |
-
and
|
| 186 |
""")
|
| 187 |
|
| 188 |
with gr.Row():
|
|
@@ -190,38 +188,45 @@ def create_interface():
|
|
| 190 |
gpu_status = gr.Textbox(
|
| 191 |
label="GPU Status",
|
| 192 |
value=check_gpu_status(),
|
| 193 |
-
interactive=False
|
| 194 |
)
|
| 195 |
-
|
| 196 |
-
# hidden constant input for model name
|
| 197 |
model_name = gr.Textbox(
|
| 198 |
value="Qwen/Qwen2.5-0.5B",
|
| 199 |
-
label="Base Model",
|
| 200 |
-
interactive=False,
|
| 201 |
visible=False
|
| 202 |
)
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
batch_size = gr.Slider(1, 4, value=2, step=1, label="Batch Size")
|
| 206 |
learning_rate = gr.Number(value=5e-5, label="Learning Rate")
|
| 207 |
train_btn = gr.Button("🚀 Start Fine-tuning", variant="primary")
|
| 208 |
|
| 209 |
with gr.Column():
|
| 210 |
output = gr.Textbox(
|
| 211 |
-
label="Training
|
| 212 |
lines=25,
|
| 213 |
max_lines=40,
|
| 214 |
-
value="
|
| 215 |
)
|
| 216 |
|
| 217 |
-
# ✅ Fixed: pass components, not strings
|
| 218 |
train_btn.click(
|
| 219 |
fn=train_model,
|
| 220 |
inputs=[model_name, num_epochs, batch_size, learning_rate],
|
| 221 |
outputs=output,
|
| 222 |
)
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
if __name__ == "__main__":
|
| 226 |
demo = create_interface()
|
| 227 |
demo.launch()
|
|
|
|
| 1 |
"""
|
| 2 |
+
PromptWizard — Qwen2.5-0.5B Fine-tuning on Bhagavad Gita Dataset
|
| 3 |
+
Optimized for Hugging Face Spaces with Zero GPU Support
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from datasets import Dataset
|
| 11 |
from transformers import (
|
|
|
|
| 12 |
AutoTokenizer,
|
| 13 |
+
AutoModelForCausalLM,
|
| 14 |
Trainer,
|
| 15 |
TrainingArguments,
|
| 16 |
)
|
|
|
|
| 17 |
from peft import LoraConfig, get_peft_model, TaskType
|
| 18 |
+
from huggingface_hub import HfApi
|
| 19 |
+
import os
|
| 20 |
|
| 21 |
|
| 22 |
+
# ------------------------------------------------------
|
| 23 |
+
# 🧠 Helper: Check GPU availability
|
| 24 |
+
# ------------------------------------------------------
|
| 25 |
def check_gpu_status():
|
| 26 |
+
return "🟢 Ready — GPU will be auto-assigned when training starts."
|
| 27 |
|
| 28 |
|
| 29 |
+
# ------------------------------------------------------
|
| 30 |
+
# 🚀 Main Training Function (runs on GPU)
|
| 31 |
+
# ------------------------------------------------------
|
| 32 |
+
@spaces.GPU(duration=600) # 10 minutes GPU allocation
|
| 33 |
def train_model(model_name, num_epochs, batch_size, learning_rate, progress=gr.Progress()):
|
| 34 |
+
log = []
|
|
|
|
|
|
|
| 35 |
try:
|
|
|
|
| 36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
+
log.append(f"🎮 Device: {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# ------------------------------------------------------
|
| 40 |
+
# 📂 Load Dataset from Hugging Face Repo (rahul7star/Gita)
|
| 41 |
+
# ------------------------------------------------------
|
| 42 |
+
progress(0.1, desc="Loading Bhagavad Gita dataset...")
|
| 43 |
+
log.append("\n📚 Loading dataset from rahul7star/Gita ...")
|
| 44 |
+
|
| 45 |
+
# Load CSV from your repo
|
| 46 |
+
dataset = Dataset.from_pandas(
|
| 47 |
+
pd.read_csv("https://huggingface.co/datasets/rahul7star/Gita/resolve/main/Gita.csv")
|
| 48 |
+
)
|
| 49 |
|
| 50 |
+
# Expected columns: 'question', 'answer'
|
| 51 |
+
if not all(c in dataset.column_names for c in ["question", "answer"]):
|
| 52 |
+
raise ValueError("CSV must contain columns: 'question' and 'answer'")
|
| 53 |
+
|
| 54 |
+
def format_row(row):
|
| 55 |
+
return {
|
| 56 |
+
"text": f"<|system|>\nYou are a spiritual teacher summarizing Gita verses.\n"
|
| 57 |
+
f"<|user|>\n{row['question']}\n"
|
| 58 |
+
f"<|assistant|>\n{row['answer']}"
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
dataset = dataset.map(format_row)
|
| 62 |
+
log.append(f"✅ Loaded {len(dataset)} examples from Bhagavad Gita CSV")
|
| 63 |
+
|
| 64 |
+
# ------------------------------------------------------
|
| 65 |
+
# 🤖 Load Qwen Model and Tokenizer
|
| 66 |
+
# ------------------------------------------------------
|
| 67 |
progress(0.3, desc="Loading model and tokenizer...")
|
| 68 |
+
log.append(f"\n🔍 Loading model: {model_name}")
|
| 69 |
|
| 70 |
+
model_name = "Qwen/Qwen2.5-0.5B" # safest base model for Zero GPU
|
|
|
|
|
|
|
| 71 |
|
|
|
|
| 72 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
| 73 |
if tokenizer.pad_token is None:
|
| 74 |
tokenizer.pad_token = tokenizer.eos_token
|
| 75 |
|
| 76 |
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
+
model_name,
|
| 78 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 79 |
)
|
| 80 |
|
| 81 |
+
if device == "cuda":
|
| 82 |
+
model = model.to(device)
|
|
|
|
| 83 |
|
| 84 |
+
log.append("✅ Model & tokenizer loaded successfully")
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# ------------------------------------------------------
|
| 87 |
+
# ⚙️ Configure LoRA for lightweight fine-tuning
|
| 88 |
+
# ------------------------------------------------------
|
| 89 |
+
progress(0.4, desc="Configuring LoRA...")
|
| 90 |
lora_config = LoraConfig(
|
| 91 |
task_type=TaskType.CAUSAL_LM,
|
| 92 |
r=8,
|
| 93 |
lora_alpha=16,
|
| 94 |
lora_dropout=0.1,
|
| 95 |
target_modules=["q_proj", "v_proj"],
|
|
|
|
| 96 |
)
|
| 97 |
model = get_peft_model(model, lora_config)
|
| 98 |
|
| 99 |
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 100 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 101 |
+
log.append(f"🧩 Trainable params: {trainable_params:,} / {total_params:,}")
|
| 102 |
|
| 103 |
+
# ------------------------------------------------------
|
| 104 |
+
# ✂️ Tokenize Dataset
|
| 105 |
+
# ------------------------------------------------------
|
| 106 |
progress(0.5, desc="Tokenizing dataset...")
|
| 107 |
+
|
| 108 |
def tokenize_fn(examples):
|
| 109 |
return tokenizer(
|
| 110 |
examples["text"],
|
| 111 |
padding="max_length",
|
| 112 |
truncation=True,
|
| 113 |
+
max_length=512,
|
| 114 |
)
|
| 115 |
|
| 116 |
+
tokenized = dataset.map(tokenize_fn, batched=True)
|
|
|
|
| 117 |
|
| 118 |
+
# ------------------------------------------------------
|
| 119 |
+
# 🎯 Setup Training Arguments
|
| 120 |
+
# ------------------------------------------------------
|
| 121 |
+
progress(0.6, desc="Configuring training...")
|
| 122 |
training_args = TrainingArguments(
|
| 123 |
+
output_dir="./qwen-gita-output",
|
| 124 |
num_train_epochs=num_epochs,
|
| 125 |
per_device_train_batch_size=batch_size,
|
| 126 |
gradient_accumulation_steps=2,
|
| 127 |
+
learning_rate=learning_rate,
|
| 128 |
+
warmup_steps=5,
|
| 129 |
logging_steps=5,
|
| 130 |
+
save_strategy="no",
|
| 131 |
fp16=device == "cuda",
|
| 132 |
+
max_steps=100, # short demo run
|
| 133 |
+
report_to="none",
|
|
|
|
| 134 |
)
|
| 135 |
|
| 136 |
+
# ------------------------------------------------------
|
| 137 |
+
# 🏋️ Train
|
| 138 |
+
# ------------------------------------------------------
|
| 139 |
+
progress(0.7, desc="Training model...")
|
| 140 |
+
log.append("\n🚀 Starting training on Bhagavad Gita dataset...")
|
| 141 |
+
|
| 142 |
trainer = Trainer(
|
| 143 |
model=model,
|
| 144 |
args=training_args,
|
| 145 |
+
train_dataset=tokenized,
|
| 146 |
tokenizer=tokenizer,
|
| 147 |
)
|
| 148 |
+
trainer.train()
|
| 149 |
|
| 150 |
+
progress(0.9, desc="Finalizing and saving...")
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
# ------------------------------------------------------
|
| 153 |
+
# 💾 Save and Upload to HF Repo
|
| 154 |
+
# ------------------------------------------------------
|
| 155 |
+
output_dir = "./qwen-gita-lora"
|
| 156 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 157 |
+
model.save_pretrained(output_dir)
|
| 158 |
tokenizer.save_pretrained(output_dir)
|
| 159 |
|
| 160 |
+
log.append("\n📤 Uploading model to 🤗 Hugging Face Hub...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
api = HfApi()
|
| 162 |
+
repo_id = "rahul7star/Qwen0.5-3B-Gita"
|
| 163 |
+
api.upload_folder(folder_path=output_dir, repo_id=repo_id)
|
| 164 |
+
log.append(f"✅ Uploaded LoRA fine-tuned model to {repo_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
progress(1.0, desc="Complete!")
|
| 167 |
+
log.append("\n🎉 Training finished successfully!")
|
| 168 |
|
| 169 |
except Exception as e:
|
| 170 |
+
log.append(f"\n❌ Error: {e}")
|
| 171 |
|
| 172 |
+
return "\n".join(log)
|
| 173 |
|
| 174 |
|
| 175 |
+
# ------------------------------------------------------
|
| 176 |
+
# 🎨 Gradio Interface
|
| 177 |
+
# ------------------------------------------------------
|
| 178 |
def create_interface():
|
| 179 |
with gr.Blocks(title="PromptWizard — Qwen Gita Trainer") as demo:
|
| 180 |
gr.Markdown("""
|
| 181 |
+
# 🧘 Qwen Gita Trainer — Fine-tune Qwen 0.5B
|
| 182 |
+
Train Qwen2.5-0.5B on your **Bhagavad Gita dataset (CSV)**
|
| 183 |
+
and auto-upload LoRA weights to your repo: **rahul7star/Qwen0.5-3B-Gita**
|
| 184 |
""")
|
| 185 |
|
| 186 |
with gr.Row():
|
|
|
|
| 188 |
gpu_status = gr.Textbox(
|
| 189 |
label="GPU Status",
|
| 190 |
value=check_gpu_status(),
|
| 191 |
+
interactive=False
|
| 192 |
)
|
|
|
|
|
|
|
| 193 |
model_name = gr.Textbox(
|
| 194 |
value="Qwen/Qwen2.5-0.5B",
|
|
|
|
|
|
|
| 195 |
visible=False
|
| 196 |
)
|
| 197 |
+
num_epochs = gr.Slider(1, 3, 1, step=1, label="Epochs")
|
| 198 |
+
batch_size = gr.Slider(1, 4, 2, step=1, label="Batch Size")
|
|
|
|
| 199 |
learning_rate = gr.Number(value=5e-5, label="Learning Rate")
|
| 200 |
train_btn = gr.Button("🚀 Start Fine-tuning", variant="primary")
|
| 201 |
|
| 202 |
with gr.Column():
|
| 203 |
output = gr.Textbox(
|
| 204 |
+
label="Training Logs",
|
| 205 |
lines=25,
|
| 206 |
max_lines=40,
|
| 207 |
+
value="Press Start to fine-tune Qwen on your Gita dataset.\nZero GPU will allocate automatically.",
|
| 208 |
)
|
| 209 |
|
|
|
|
| 210 |
train_btn.click(
|
| 211 |
fn=train_model,
|
| 212 |
inputs=[model_name, num_epochs, batch_size, learning_rate],
|
| 213 |
outputs=output,
|
| 214 |
)
|
| 215 |
|
| 216 |
+
gr.Markdown("""
|
| 217 |
+
---
|
| 218 |
+
💡 **Notes**
|
| 219 |
+
- Requires your CSV on HF dataset: `rahul7star/Gita/Gita.csv`
|
| 220 |
+
- Columns: `question`, `answer`
|
| 221 |
+
- Model uploads automatically to: `rahul7star/Qwen0.5-3B-Gita`
|
| 222 |
+
""")
|
| 223 |
+
|
| 224 |
return demo
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# ------------------------------------------------------
|
| 228 |
+
# 🚪 Launch App
|
| 229 |
+
# ------------------------------------------------------
|
| 230 |
if __name__ == "__main__":
|
| 231 |
demo = create_interface()
|
| 232 |
demo.launch()
|