SAM3-Demo / app.py
prithivMLmods's picture
Update app.py
2187069 verified
raw
history blame
7.18 kB
import os
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image, ImageDraw
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
from transformers import Sam3Processor, Sam3Model
# --- Handle optional 'spaces' import for local compatibility ---
try:
import spaces
except ImportError:
class spaces:
@staticmethod
def GPU(duration=60):
def decorator(func):
return func
return decorator
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
# --- Hardware Setup ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# --- Model Loading ---
# Using the facebook/sam3 model as requested
try:
print("Loading SAM3 Model and Processor...")
model = Sam3Model.from_pretrained("facebook/sam3").to(device)
processor = Sam3Processor.from_pretrained("facebook/sam3")
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
print("Ensure you have the correct libraries installed and access to the model.")
# Fallback/Placeholder for demonstration if model doesn't exist in environment yet
model = None
processor = None
@spaces.GPU(duration=60)
def segment_image(input_image, text_prompt, threshold=0.5):
if input_image is None:
raise gr.Error("Please upload an image.")
if not text_prompt:
raise gr.Error("Please enter a text prompt (e.g., 'cat', 'face').")
if model is None or processor is None:
raise gr.Error("Model not loaded correctly.")
# Convert image to RGB
image_pil = input_image.convert("RGB")
# Preprocess
inputs = processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)
# Inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor.post_process_instance_segmentation(
outputs,
threshold=threshold,
mask_threshold=0.5,
target_sizes=inputs.get("original_sizes").tolist()
)[0]
masks = results['masks'] # Boolean tensor [N, H, W]
scores = results['scores']
# Prepare for Gradio AnnotatedImage
# Gradio expects (image, [(mask, label), ...])
annotations = []
masks_np = masks.cpu().numpy()
scores_np = scores.cpu().numpy()
for i, mask in enumerate(masks_np):
# mask is a boolean array (True/False).
# AnnotatedImage handles the coloring automatically.
# We just pass the mask and a label.
score_val = scores_np[i]
label = f"{text_prompt} ({score_val:.2f})"
annotations.append((mask, label))
# Return tuple format for AnnotatedImage
return (image_pil, annotations)
css="""
#col-container {
margin: 0 auto;
max-width: 980px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"# **SAM3 Image Segmentation**",
elem_id="main-title"
)
gr.Markdown("Segment objects in images using **SAM3** (Segment Anything Model 3) with text prompts.")
with gr.Row():
# Left Column: Inputs
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="pil", height=300)
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="e.g., cat, ear, car wheel...",
info="What do you want to segment?"
)
run_button = gr.Button("Segment", variant="primary")
# Right Column: Output
with gr.Column(scale=1.5):
# AnnotatedImage creates a nice overlay visualization
output_image = gr.AnnotatedImage(label="Segmented Output", height=400)
with gr.Row():
threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.05)
# Examples
gr.Examples(
examples=[
["examples/cat.jpg", "cat", 0.5],
["examples/car.jpg", "tire", 0.4],
["examples/fruit.jpg", "apple", 0.5],
],
inputs=[input_image, text_prompt, threshold],
outputs=[output_image],
fn=segment_image,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=segment_image,
inputs=[input_image, text_prompt, threshold],
outputs=[output_image]
)
if __name__ == "__main__":
demo.launch(ssr_mode=False, show_error=True)