File size: 7,177 Bytes
74593d4
 
 
 
1b33b1c
 
74593d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187069
 
 
 
 
 
 
 
 
 
 
 
 
74593d4
 
2187069
74593d4
 
 
2187069
 
74593d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187069
74593d4
 
2187069
74593d4
 
 
2187069
 
 
 
 
 
74593d4
 
 
 
 
 
 
 
 
2187069
74593d4
 
 
 
 
 
b01e247
74593d4
 
 
 
 
 
 
b01e247
 
74593d4
 
 
 
b01e247
74593d4
 
b01e247
 
74593d4
 
 
 
b01e247
74593d4
1b33b1c
b01e247
 
1b33b1c
 
 
 
1fd4203
b01e247
1b33b1c
 
 
 
 
 
 
b01e247
1b33b1c
 
b01e247
 
 
1b33b1c
 
 
 
 
b01e247
 
 
1b33b1c
b01e247
1b33b1c
 
b01e247
74593d4
 
 
 
 
b01e247
74593d4
b01e247
74593d4
 
2187069
74593d4
 
b01e247
74593d4
 
 
b01e247
74593d4
 
 
 
0bd7a83
b01e247
74593d4
b01e247
 
1b33b1c
74593d4
b01e247
74593d4
 
 
b01e247
a90a005
0bd7a83
 
 
 
74593d4
 
 
b01e247
 
 
74593d4
b01e247
74593d4
b01e247
74593d4
b01e247
74593d4
 
 
b01e247
 
74593d4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image, ImageDraw
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
from transformers import Sam3Processor, Sam3Model

# --- Handle optional 'spaces' import for local compatibility ---
try:
    import spaces
except ImportError:
    class spaces:
        @staticmethod
        def GPU(duration=60):
            def decorator(func):
                return func
            return decorator

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

steel_blue_theme = SteelBlueTheme()

# --- Hardware Setup ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# --- Model Loading ---
# Using the facebook/sam3 model as requested
try:
    print("Loading SAM3 Model and Processor...")
    model = Sam3Model.from_pretrained("facebook/sam3").to(device)
    processor = Sam3Processor.from_pretrained("facebook/sam3")
    print("Model loaded successfully.")
except Exception as e:
    print(f"Error loading model: {e}")
    print("Ensure you have the correct libraries installed and access to the model.")
    # Fallback/Placeholder for demonstration if model doesn't exist in environment yet
    model = None 
    processor = None

@spaces.GPU(duration=60)
def segment_image(input_image, text_prompt, threshold=0.5):
    if input_image is None:
        raise gr.Error("Please upload an image.")
    if not text_prompt:
        raise gr.Error("Please enter a text prompt (e.g., 'cat', 'face').")
    
    if model is None or processor is None:
        raise gr.Error("Model not loaded correctly.")

    # Convert image to RGB
    image_pil = input_image.convert("RGB")

    # Preprocess
    inputs = processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)

    # Inference
    with torch.no_grad():
        outputs = model(**inputs)

    # Post-process results
    results = processor.post_process_instance_segmentation(
        outputs,
        threshold=threshold,
        mask_threshold=0.5,
        target_sizes=inputs.get("original_sizes").tolist()
    )[0]

    masks = results['masks'] # Boolean tensor [N, H, W]
    scores = results['scores']
    
    # Prepare for Gradio AnnotatedImage
    # Gradio expects (image, [(mask, label), ...])
    
    annotations = []
    masks_np = masks.cpu().numpy()
    scores_np = scores.cpu().numpy()
    
    for i, mask in enumerate(masks_np):
        # mask is a boolean array (True/False). 
        # AnnotatedImage handles the coloring automatically.
        # We just pass the mask and a label.
        score_val = scores_np[i]
        label = f"{text_prompt} ({score_val:.2f})"
        annotations.append((mask, label))
    
    # Return tuple format for AnnotatedImage
    return (image_pil, annotations)

css="""
#col-container {
    margin: 0 auto;
    max-width: 980px;
}
#main-title h1 {font-size: 2.1em !important;}
"""

with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            "# **SAM3 Image Segmentation**", 
            elem_id="main-title"
        )
        
        gr.Markdown("Segment objects in images using **SAM3** (Segment Anything Model 3) with text prompts.")

        with gr.Row():
            # Left Column: Inputs
            with gr.Column(scale=1):
                input_image = gr.Image(label="Input Image", type="pil", height=300)
                text_prompt = gr.Textbox(
                    label="Text Prompt",
                    placeholder="e.g., cat, ear, car wheel...",
                    info="What do you want to segment?"
                )
                
                run_button = gr.Button("Segment", variant="primary")

            # Right Column: Output
            with gr.Column(scale=1.5):
                # AnnotatedImage creates a nice overlay visualization
                output_image = gr.AnnotatedImage(label="Segmented Output", height=400)
                
                with gr.Row():
                    threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.05)
        
        # Examples
        gr.Examples(
            examples=[
                ["examples/cat.jpg", "cat", 0.5],
                ["examples/car.jpg", "tire", 0.4],
                ["examples/fruit.jpg", "apple", 0.5],
            ],
            inputs=[input_image, text_prompt, threshold],
            outputs=[output_image],
            fn=segment_image,
            cache_examples=False,
            label="Examples"
        )

    run_button.click(
        fn=segment_image,
        inputs=[input_image, text_prompt, threshold],
        outputs=[output_image]
    )

if __name__ == "__main__":
    demo.launch(ssr_mode=False, show_error=True)