Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,177 Bytes
74593d4 1b33b1c 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 1b33b1c b01e247 1b33b1c 1fd4203 b01e247 1b33b1c b01e247 1b33b1c b01e247 1b33b1c b01e247 1b33b1c b01e247 1b33b1c b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 2187069 74593d4 b01e247 74593d4 b01e247 74593d4 0bd7a83 b01e247 74593d4 b01e247 1b33b1c 74593d4 b01e247 74593d4 b01e247 a90a005 0bd7a83 74593d4 b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 b01e247 74593d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image, ImageDraw
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
from transformers import Sam3Processor, Sam3Model
# --- Handle optional 'spaces' import for local compatibility ---
try:
import spaces
except ImportError:
class spaces:
@staticmethod
def GPU(duration=60):
def decorator(func):
return func
return decorator
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
# --- Hardware Setup ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# --- Model Loading ---
# Using the facebook/sam3 model as requested
try:
print("Loading SAM3 Model and Processor...")
model = Sam3Model.from_pretrained("facebook/sam3").to(device)
processor = Sam3Processor.from_pretrained("facebook/sam3")
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
print("Ensure you have the correct libraries installed and access to the model.")
# Fallback/Placeholder for demonstration if model doesn't exist in environment yet
model = None
processor = None
@spaces.GPU(duration=60)
def segment_image(input_image, text_prompt, threshold=0.5):
if input_image is None:
raise gr.Error("Please upload an image.")
if not text_prompt:
raise gr.Error("Please enter a text prompt (e.g., 'cat', 'face').")
if model is None or processor is None:
raise gr.Error("Model not loaded correctly.")
# Convert image to RGB
image_pil = input_image.convert("RGB")
# Preprocess
inputs = processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)
# Inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor.post_process_instance_segmentation(
outputs,
threshold=threshold,
mask_threshold=0.5,
target_sizes=inputs.get("original_sizes").tolist()
)[0]
masks = results['masks'] # Boolean tensor [N, H, W]
scores = results['scores']
# Prepare for Gradio AnnotatedImage
# Gradio expects (image, [(mask, label), ...])
annotations = []
masks_np = masks.cpu().numpy()
scores_np = scores.cpu().numpy()
for i, mask in enumerate(masks_np):
# mask is a boolean array (True/False).
# AnnotatedImage handles the coloring automatically.
# We just pass the mask and a label.
score_val = scores_np[i]
label = f"{text_prompt} ({score_val:.2f})"
annotations.append((mask, label))
# Return tuple format for AnnotatedImage
return (image_pil, annotations)
css="""
#col-container {
margin: 0 auto;
max-width: 980px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"# **SAM3 Image Segmentation**",
elem_id="main-title"
)
gr.Markdown("Segment objects in images using **SAM3** (Segment Anything Model 3) with text prompts.")
with gr.Row():
# Left Column: Inputs
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="pil", height=300)
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="e.g., cat, ear, car wheel...",
info="What do you want to segment?"
)
run_button = gr.Button("Segment", variant="primary")
# Right Column: Output
with gr.Column(scale=1.5):
# AnnotatedImage creates a nice overlay visualization
output_image = gr.AnnotatedImage(label="Segmented Output", height=400)
with gr.Row():
threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.05)
# Examples
gr.Examples(
examples=[
["examples/cat.jpg", "cat", 0.5],
["examples/car.jpg", "tire", 0.4],
["examples/fruit.jpg", "apple", 0.5],
],
inputs=[input_image, text_prompt, threshold],
outputs=[output_image],
fn=segment_image,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=segment_image,
inputs=[input_image, text_prompt, threshold],
outputs=[output_image]
)
if __name__ == "__main__":
demo.launch(ssr_mode=False, show_error=True) |