Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -2,8 +2,7 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
-
import
|
| 6 |
-
from PIL import Image, ImageDraw
|
| 7 |
from typing import Iterable
|
| 8 |
from gradio.themes import Soft
|
| 9 |
from gradio.themes.utils import colors, fonts, sizes
|
|
@@ -94,7 +93,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 94 |
print(f"Using device: {device}")
|
| 95 |
|
| 96 |
# --- Model Loading ---
|
| 97 |
-
# Using the facebook/sam3 model as requested
|
| 98 |
try:
|
| 99 |
print("Loading SAM3 Model and Processor...")
|
| 100 |
model = Sam3Model.from_pretrained("facebook/sam3").to(device)
|
|
@@ -102,112 +100,180 @@ try:
|
|
| 102 |
print("Model loaded successfully.")
|
| 103 |
except Exception as e:
|
| 104 |
print(f"Error loading model: {e}")
|
| 105 |
-
print("Ensure you have the correct libraries installed and access to the model.")
|
| 106 |
-
# Fallback/Placeholder for demonstration if model doesn't exist in environment yet
|
| 107 |
model = None
|
| 108 |
processor = None
|
| 109 |
|
| 110 |
@spaces.GPU(duration=60)
|
| 111 |
-
def
|
| 112 |
if input_image is None:
|
| 113 |
raise gr.Error("Please upload an image.")
|
| 114 |
-
if not text_prompt:
|
| 115 |
-
raise gr.Error("Please enter a text prompt (e.g., 'cat', 'face').")
|
| 116 |
|
| 117 |
if model is None or processor is None:
|
| 118 |
raise gr.Error("Model not loaded correctly.")
|
| 119 |
|
| 120 |
# Convert image to RGB
|
| 121 |
image_pil = input_image.convert("RGB")
|
|
|
|
| 122 |
|
| 123 |
-
# Preprocess
|
| 124 |
-
inputs = processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)
|
| 125 |
-
|
| 126 |
-
# Inference
|
| 127 |
with torch.no_grad():
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
return (image_pil, annotations)
|
| 158 |
|
|
|
|
| 159 |
css="""
|
| 160 |
#col-container {
|
| 161 |
margin: 0 auto;
|
| 162 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
}
|
| 164 |
-
#main-title h1 {font-size: 2.1em !important;}
|
| 165 |
"""
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
with gr.Blocks(css=css, theme=plum_theme) as demo:
|
| 168 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 169 |
gr.Markdown(
|
| 170 |
-
"# **SAM3 Image Segmentation**",
|
| 171 |
elem_id="main-title"
|
| 172 |
)
|
| 173 |
|
| 174 |
-
gr.Markdown("Segment objects
|
| 175 |
|
| 176 |
with gr.Row():
|
| 177 |
# Left Column: Inputs
|
| 178 |
with gr.Column(scale=1):
|
| 179 |
input_image = gr.Image(label="Input Image", type="pil", height=350)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
text_prompt = gr.Textbox(
|
| 181 |
label="Text Prompt",
|
| 182 |
placeholder="e.g., cat, ear, car wheel...",
|
| 183 |
-
info="
|
|
|
|
| 184 |
)
|
|
|
|
| 185 |
threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.05)
|
| 186 |
|
| 187 |
-
run_button = gr.Button("
|
| 188 |
|
| 189 |
# Right Column: Output
|
| 190 |
with gr.Column(scale=1.5):
|
| 191 |
-
# AnnotatedImage creates a nice overlay visualization
|
| 192 |
output_image = gr.AnnotatedImage(label="Segmented Output", height=500)
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
# Examples
|
| 195 |
gr.Examples(
|
| 196 |
examples=[
|
| 197 |
-
["examples/cat.jpg", "cat", 0.5],
|
| 198 |
-
["examples/
|
| 199 |
-
["examples/
|
| 200 |
],
|
| 201 |
-
inputs=[input_image, text_prompt, threshold],
|
| 202 |
outputs=[output_image],
|
| 203 |
-
fn=
|
| 204 |
cache_examples=False,
|
| 205 |
-
label="Examples
|
| 206 |
)
|
| 207 |
|
| 208 |
run_button.click(
|
| 209 |
-
fn=
|
| 210 |
-
inputs=[input_image, text_prompt, threshold],
|
| 211 |
outputs=[output_image]
|
| 212 |
)
|
| 213 |
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image
|
|
|
|
| 6 |
from typing import Iterable
|
| 7 |
from gradio.themes import Soft
|
| 8 |
from gradio.themes.utils import colors, fonts, sizes
|
|
|
|
| 93 |
print(f"Using device: {device}")
|
| 94 |
|
| 95 |
# --- Model Loading ---
|
|
|
|
| 96 |
try:
|
| 97 |
print("Loading SAM3 Model and Processor...")
|
| 98 |
model = Sam3Model.from_pretrained("facebook/sam3").to(device)
|
|
|
|
| 100 |
print("Model loaded successfully.")
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Error loading model: {e}")
|
|
|
|
|
|
|
| 103 |
model = None
|
| 104 |
processor = None
|
| 105 |
|
| 106 |
@spaces.GPU(duration=60)
|
| 107 |
+
def process_image(input_image, task_type, text_prompt, threshold=0.5):
|
| 108 |
if input_image is None:
|
| 109 |
raise gr.Error("Please upload an image.")
|
|
|
|
|
|
|
| 110 |
|
| 111 |
if model is None or processor is None:
|
| 112 |
raise gr.Error("Model not loaded correctly.")
|
| 113 |
|
| 114 |
# Convert image to RGB
|
| 115 |
image_pil = input_image.convert("RGB")
|
| 116 |
+
annotations = []
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
with torch.no_grad():
|
| 119 |
+
if task_type == "Instance Segmentation":
|
| 120 |
+
if not text_prompt:
|
| 121 |
+
raise gr.Error("Please enter a text prompt for Instance Segmentation.")
|
| 122 |
+
|
| 123 |
+
# 1. Instance Segmentation Flow (Text Prompt)
|
| 124 |
+
inputs = processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)
|
| 125 |
+
outputs = model(**inputs)
|
| 126 |
+
|
| 127 |
+
# Post-process instance masks
|
| 128 |
+
results = processor.post_process_instance_segmentation(
|
| 129 |
+
outputs,
|
| 130 |
+
threshold=threshold,
|
| 131 |
+
mask_threshold=0.5,
|
| 132 |
+
target_sizes=inputs.get("original_sizes").tolist()
|
| 133 |
+
)[0]
|
| 134 |
+
|
| 135 |
+
masks_np = results['masks'].cpu().numpy() # [N, H, W]
|
| 136 |
+
scores_np = results['scores'].cpu().numpy()
|
| 137 |
+
|
| 138 |
+
for i, mask in enumerate(masks_np):
|
| 139 |
+
score_val = scores_np[i]
|
| 140 |
+
label = f"{text_prompt} ({score_val:.2f})"
|
| 141 |
+
annotations.append((mask, label))
|
| 142 |
+
|
| 143 |
+
elif task_type == "Semantic Segmentation":
|
| 144 |
+
# 2. Semantic Segmentation Flow (No Prompt)
|
| 145 |
+
# Call processor without text
|
| 146 |
+
inputs = processor(images=image_pil, return_tensors="pt").to(device)
|
| 147 |
+
outputs = model(**inputs)
|
| 148 |
+
|
| 149 |
+
# Extract semantic segmentation map
|
| 150 |
+
# Shape: [batch, channels, height, width]
|
| 151 |
+
semantic_seg = outputs.semantic_seg
|
| 152 |
+
|
| 153 |
+
# Process for visualization:
|
| 154 |
+
# Assuming semantic_seg is a dense map (e.g., saliency or class probabilities).
|
| 155 |
+
# Since the snippet implies a single channel [batch, 1, H, W], we threshold it.
|
| 156 |
+
|
| 157 |
+
# Remove batch dim -> [1, H, W] or [C, H, W]
|
| 158 |
+
seg_map = semantic_seg.squeeze(0)
|
| 159 |
+
|
| 160 |
+
# If 1 channel, create binary mask based on threshold/sigmoid
|
| 161 |
+
if seg_map.shape[0] == 1:
|
| 162 |
+
# Apply sigmoid if logits, or just threshold if probs
|
| 163 |
+
# Assuming logits for general safety in torch models
|
| 164 |
+
mask_tensor = torch.sigmoid(seg_map[0]) > threshold
|
| 165 |
+
mask_np = mask_tensor.cpu().numpy()
|
| 166 |
+
|
| 167 |
+
# Resize mask to original image size if needed
|
| 168 |
+
# (Note: outputs.semantic_seg is usually feature map size, might need upscaling)
|
| 169 |
+
# For simplicity in this snippet, we assume processor/output aligns or AnnotatedImage handles resizing (it usually requires matching sizes).
|
| 170 |
+
# If size mismatch occurs, we convert mask to PIL, resize, then back to numpy.
|
| 171 |
+
|
| 172 |
+
if mask_np.shape != (image_pil.height, image_pil.width):
|
| 173 |
+
mask_img = Image.fromarray(mask_np.astype(np.uint8) * 255)
|
| 174 |
+
mask_img = mask_img.resize(image_pil.size, Image.NEAREST)
|
| 175 |
+
mask_np = np.array(mask_img) > 128
|
| 176 |
+
|
| 177 |
+
annotations.append((mask_np, "Semantic Region"))
|
| 178 |
+
else:
|
| 179 |
+
# If multiple channels (classes), take argmax
|
| 180 |
+
# This logic depends on specific SAM3 output structure
|
| 181 |
+
mask_idx = torch.argmax(seg_map, dim=0).cpu().numpy()
|
| 182 |
+
# Just visualize non-background (assuming 0 is background)
|
| 183 |
+
mask_np = mask_idx > 0
|
| 184 |
+
|
| 185 |
+
if mask_np.shape != (image_pil.height, image_pil.width):
|
| 186 |
+
mask_img = Image.fromarray(mask_np.astype(np.uint8) * 255)
|
| 187 |
+
mask_img = mask_img.resize(image_pil.size, Image.NEAREST)
|
| 188 |
+
mask_np = np.array(mask_img) > 128
|
| 189 |
+
|
| 190 |
+
annotations.append((mask_np, "Segmented Objects"))
|
| 191 |
+
|
| 192 |
+
# Return tuple format for AnnotatedImage: (original_image, list_of_annotations)
|
| 193 |
return (image_pil, annotations)
|
| 194 |
|
| 195 |
+
# --- UI Logic ---
|
| 196 |
css="""
|
| 197 |
#col-container {
|
| 198 |
margin: 0 auto;
|
| 199 |
+
max-width: 1100px;
|
| 200 |
+
}
|
| 201 |
+
#main-title h1 {
|
| 202 |
+
font-size: 2.1em !important;
|
| 203 |
+
display: flex;
|
| 204 |
+
align-items: center;
|
| 205 |
+
justify-content: center;
|
| 206 |
+
gap: 10px;
|
| 207 |
}
|
|
|
|
| 208 |
"""
|
| 209 |
|
| 210 |
+
def update_visibility(task):
|
| 211 |
+
if task == "Instance Segmentation":
|
| 212 |
+
return gr.update(visible=True)
|
| 213 |
+
else:
|
| 214 |
+
return gr.update(visible=False)
|
| 215 |
+
|
| 216 |
with gr.Blocks(css=css, theme=plum_theme) as demo:
|
| 217 |
with gr.Column(elem_id="col-container"):
|
| 218 |
+
# Header with Logo
|
| 219 |
gr.Markdown(
|
| 220 |
+
"# **SAM3 Image Segmentation** <img src='https://huggingface.co/spaces/prithivMLmods/Qwen-Image-Edit-2509-LoRAs-Fast-Fusion/resolve/main/Lora%20Huggy.png' alt='Logo' width='35' height='35' style='display: inline-block; vertical-align: text-bottom; margin-left: 5px;'>",
|
| 221 |
elem_id="main-title"
|
| 222 |
)
|
| 223 |
|
| 224 |
+
gr.Markdown("Segment objects using **SAM3** (Segment Anything Model 3). Choose **Instance** for specific text prompts or **Semantic** for automatic segmentation.")
|
| 225 |
|
| 226 |
with gr.Row():
|
| 227 |
# Left Column: Inputs
|
| 228 |
with gr.Column(scale=1):
|
| 229 |
input_image = gr.Image(label="Input Image", type="pil", height=350)
|
| 230 |
+
|
| 231 |
+
task_type = gr.Radio(
|
| 232 |
+
choices=["Instance Segmentation", "Semantic Segmentation"],
|
| 233 |
+
value="Instance Segmentation",
|
| 234 |
+
label="Task Type",
|
| 235 |
+
interactive=True
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
text_prompt = gr.Textbox(
|
| 239 |
label="Text Prompt",
|
| 240 |
placeholder="e.g., cat, ear, car wheel...",
|
| 241 |
+
info="Required for Instance Segmentation",
|
| 242 |
+
visible=True
|
| 243 |
)
|
| 244 |
+
|
| 245 |
threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.05)
|
| 246 |
|
| 247 |
+
run_button = gr.Button("Run Segmentation", variant="primary")
|
| 248 |
|
| 249 |
# Right Column: Output
|
| 250 |
with gr.Column(scale=1.5):
|
|
|
|
| 251 |
output_image = gr.AnnotatedImage(label="Segmented Output", height=500)
|
| 252 |
|
| 253 |
+
# Event: Hide text prompt when Semantic Segmentation is selected
|
| 254 |
+
task_type.change(
|
| 255 |
+
fn=update_visibility,
|
| 256 |
+
inputs=[task_type],
|
| 257 |
+
outputs=[text_prompt]
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
# Examples
|
| 261 |
gr.Examples(
|
| 262 |
examples=[
|
| 263 |
+
["examples/cat.jpg", "Instance Segmentation", "cat", 0.5],
|
| 264 |
+
["examples/room.jpg", "Semantic Segmentation", "", 0.5],
|
| 265 |
+
["examples/car.jpg", "Instance Segmentation", "tire", 0.4],
|
| 266 |
],
|
| 267 |
+
inputs=[input_image, task_type, text_prompt, threshold],
|
| 268 |
outputs=[output_image],
|
| 269 |
+
fn=process_image,
|
| 270 |
cache_examples=False,
|
| 271 |
+
label="Examples"
|
| 272 |
)
|
| 273 |
|
| 274 |
run_button.click(
|
| 275 |
+
fn=process_image,
|
| 276 |
+
inputs=[input_image, task_type, text_prompt, threshold],
|
| 277 |
outputs=[output_image]
|
| 278 |
)
|
| 279 |
|