Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
| import random | |
| import uuid | |
| from typing import Tuple, Union, List, Optional, Any, Dict | |
| import numpy as np | |
| import time | |
| import zipfile | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| # Description for the app | |
| DESCRIPTION = """## flux-krea vs qwen""" | |
| # Helper functions | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # Load pipelines | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Flux.1-krea pipeline | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
| good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device) | |
| pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device) | |
| # Qwen/Qwen-Image pipeline | |
| pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device) | |
| # Define custom flux_pipe_call for Flux.1-krea | |
| def flux_pipe_call_that_returns_an_iterable_of_images( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| max_sequence_length: int = 512, | |
| good_vae: Optional[Any] = None, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None | |
| prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents_for_image, return_dict=False)[0] | |
| yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| torch.cuda.empty_cache() | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor | |
| image = good_vae.decode(latents, return_dict=False)[0] | |
| self.maybe_free_model_hooks() | |
| torch.cuda.empty_cache() | |
| yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
| pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea) | |
| # Helper functions for Flux.1-krea | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed.") | |
| if timesteps is not None: | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # Aspect ratios | |
| aspect_ratios = { | |
| "1:1": (1328, 1328), | |
| "16:9": (1664, 928), | |
| "9:16": (928, 1664), | |
| "4:3": (1472, 1140), | |
| "3:4": (1140, 1472) | |
| } | |
| # Generation function for Flux.1-krea | |
| def generate_krea( | |
| prompt: str, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 4.5, | |
| randomize_seed: bool = False, | |
| num_inference_steps: int = 28, | |
| num_images: int = 1, | |
| zip_images: bool = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device).manual_seed(seed) | |
| start_time = time.time() | |
| images = [] | |
| for _ in range(num_images): | |
| final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| output_type="pil", | |
| good_vae=good_vae, | |
| ))[-1] # Take the final image only | |
| images.append(final_img) | |
| end_time = time.time() | |
| duration = end_time - start_time | |
| image_paths = [save_image(img) for img in images] | |
| zip_path = None | |
| if zip_images: | |
| zip_name = str(uuid.uuid4()) + ".zip" | |
| with zipfile.ZipFile(zip_name, 'w') as zipf: | |
| for i, img_path in enumerate(image_paths): | |
| zipf.write(img_path, arcname=f"Img_{i}.png") | |
| zip_path = zip_name | |
| return image_paths, seed, f"{duration:.2f}", zip_path | |
| # Generation function for Qwen/Qwen-Image | |
| def generate_qwen( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 4.0, | |
| randomize_seed: bool = False, | |
| num_inference_steps: int = 50, | |
| num_images: int = 1, | |
| zip_images: bool = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device).manual_seed(seed) | |
| start_time = time.time() | |
| images = pipe_qwen( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt if negative_prompt else None, | |
| height=height, | |
| width=width, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images, | |
| generator=generator, | |
| output_type="pil", | |
| ).images | |
| end_time = time.time() | |
| duration = end_time - start_time | |
| image_paths = [save_image(img) for img in images] | |
| zip_path = None | |
| if zip_images: | |
| zip_name = str(uuid.uuid4()) + ".zip" | |
| with zipfile.ZipFile(zip_name, 'w') as zipf: | |
| for i, img_path in enumerate(image_paths): | |
| zipf.write(img_path, arcname=f"Img_{i}.png") | |
| zip_path = zip_name | |
| return image_paths, seed, f"{duration:.2f}", zip_path | |
| # Main generation function | |
| def generate( | |
| model_choice: str, | |
| prompt: str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3.5, | |
| randomize_seed: bool = False, | |
| num_inference_steps: int = 28, | |
| num_images: int = 1, | |
| zip_images: bool = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if model_choice == "Flux.1-krea": | |
| return generate_krea( | |
| prompt=prompt, | |
| seed=seed, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| randomize_seed=randomize_seed, | |
| num_inference_steps=num_inference_steps, | |
| num_images=num_images, | |
| zip_images=zip_images, | |
| progress=progress, | |
| ) | |
| elif model_choice == "Qwen Image": | |
| final_negative_prompt = negative_prompt if use_negative_prompt else "" | |
| return generate_qwen( | |
| prompt=prompt, | |
| negative_prompt=final_negative_prompt, | |
| seed=seed, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| randomize_seed=randomize_seed, | |
| num_inference_steps=num_inference_steps, | |
| num_images=num_images, | |
| zip_images=zip_images, | |
| progress=progress, | |
| ) | |
| else: | |
| raise ValueError("Invalid model choice") | |
| # Examples | |
| examples = [ | |
| "An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it", | |
| "Headshot of handsome young man, wearing dark gray sweater, brown hair and short beard, serious look, black background, soft studio lighting", | |
| "A medium-angle shot of a young woman with long brown hair, wearing glasses, standing in front of purple and white lights", | |
| "High-resolution photograph of a woman, photorealistic, vibrant colors" | |
| ] | |
| css = ''' | |
| .gradio-container { | |
| max-width: 590px !important; | |
| margin: 0 auto !important; | |
| } | |
| h1 { | |
| text-align: center; | |
| } | |
| footer { | |
| visibility: hidden; | |
| } | |
| ''' | |
| # Gradio interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True) | |
| with gr.Row(): | |
| model_choice = gr.Radio( | |
| choices=["Flux.1-krea", "Qwen Image"], | |
| label="Select Model", | |
| value="Flux.1-krea" | |
| ) | |
| with gr.Accordion("Additional Options", open=False): | |
| aspect_ratio = gr.Dropdown( | |
| label="Aspect Ratio", | |
| choices=list(aspect_ratios.keys()), | |
| value="1:1", | |
| ) | |
| use_negative_prompt = gr.Checkbox( | |
| label="Use negative prompt (Qwen Image only)", | |
| value=False, | |
| visible=False | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=2048, | |
| step=64, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=2048, | |
| step=64, | |
| value=1024, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.0, | |
| maximum=20.0, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=28, | |
| ) | |
| num_images = gr.Slider( | |
| label="Number of images", | |
| minimum=1, | |
| maximum=5, | |
| step=1, | |
| value=1, | |
| ) | |
| zip_images = gr.Checkbox(label="Zip generated images", value=False) | |
| gr.Markdown("### Output Information") | |
| seed_display = gr.Textbox(label="Seed used", interactive=False) | |
| generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False) | |
| zip_file = gr.File(label="Download ZIP") | |
| # Update aspect ratio | |
| def set_dimensions(ar): | |
| w, h = aspect_ratios[ar] | |
| return gr.update(value=w), gr.update(value=h) | |
| aspect_ratio.change( | |
| fn=set_dimensions, | |
| inputs=aspect_ratio, | |
| outputs=[width, height] | |
| ) | |
| # Update model-specific settings | |
| def update_settings(mc): | |
| if mc == "Flux.1-krea": | |
| return ( | |
| gr.update(value=28), | |
| gr.update(value=3.5), | |
| gr.update(visible=False) | |
| ) | |
| elif mc == "Qwen Image": | |
| return ( | |
| gr.update(value=50), | |
| gr.update(value=4.0), | |
| gr.update(visible=True) | |
| ) | |
| model_choice.change( | |
| fn=update_settings, | |
| inputs=model_choice, | |
| outputs=[num_inference_steps, guidance_scale, use_negative_prompt] | |
| ) | |
| # Negative prompt visibility | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt | |
| ) | |
| # Run button and prompt submit | |
| gr.on( | |
| triggers=[prompt.submit, run_button.click], | |
| fn=generate, | |
| inputs=[ | |
| model_choice, | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| randomize_seed, | |
| num_inference_steps, | |
| num_images, | |
| zip_images, | |
| ], | |
| outputs=[result, seed_display, generation_time, zip_file], | |
| api_name="run", | |
| ) | |
| # Examples | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=[result, seed_display, generation_time, zip_file], | |
| fn=generate, | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True) |