Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ import zipfile
|
|
| 12 |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 13 |
|
| 14 |
# Description for the app
|
| 15 |
-
DESCRIPTION = """## flux
|
| 16 |
|
| 17 |
# Helper functions
|
| 18 |
def save_image(img):
|
|
@@ -28,24 +28,19 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
MAX_IMAGE_SIZE = 2048
|
| 30 |
|
| 31 |
-
# Load pipelines
|
| 32 |
-
# Flux.1-dev-realism
|
| 33 |
-
base_model_dev = "prithivMLmods/Flux.1-Merged" # Merge of (black-forest-labs/FLUX.1-dev + black-forest-labs/FLUX.1-schnell)
|
| 34 |
-
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
|
| 35 |
-
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
| 36 |
-
trigger_word = "Super Realism"
|
| 37 |
-
pipe_dev.load_lora_weights(lora_repo)
|
| 38 |
-
pipe_dev.to("cuda")
|
| 39 |
-
|
| 40 |
-
# Flux.1-krea
|
| 41 |
dtype = torch.bfloat16
|
| 42 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 43 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 44 |
-
# Merge of (black-forest-labs/FLUX.1-dev + https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev)
|
| 45 |
good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 46 |
pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 47 |
|
| 48 |
-
#
|
|
|
|
|
|
|
|
|
|
| 49 |
@torch.inference_mode()
|
| 50 |
def flux_pipe_call_that_returns_an_iterable_of_images(
|
| 51 |
self,
|
|
@@ -167,7 +162,7 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
|
|
| 167 |
|
| 168 |
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
|
| 169 |
|
| 170 |
-
# Helper functions for
|
| 171 |
def calculate_shift(
|
| 172 |
image_seq_len,
|
| 173 |
base_seq_len: int = 256,
|
|
@@ -203,67 +198,48 @@ def retrieve_timesteps(
|
|
| 203 |
timesteps = scheduler.timesteps
|
| 204 |
return timesteps, num_inference_steps
|
| 205 |
|
| 206 |
-
#
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 215 |
-
DEFAULT_STYLE_NAME = "Style Zero"
|
| 216 |
-
STYLE_NAMES = list(styles.keys())
|
| 217 |
-
|
| 218 |
-
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
|
| 219 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 220 |
-
return p.replace("{prompt}", positive), n
|
| 221 |
|
| 222 |
-
# Generation function for
|
| 223 |
@spaces.GPU
|
| 224 |
-
def
|
| 225 |
prompt: str,
|
| 226 |
-
negative_prompt: str = "",
|
| 227 |
-
use_negative_prompt: bool = False,
|
| 228 |
seed: int = 0,
|
| 229 |
width: int = 1024,
|
| 230 |
height: int = 1024,
|
| 231 |
-
guidance_scale: float =
|
| 232 |
randomize_seed: bool = False,
|
| 233 |
-
|
| 234 |
-
num_inference_steps: int = 30,
|
| 235 |
num_images: int = 1,
|
| 236 |
zip_images: bool = False,
|
| 237 |
progress=gr.Progress(track_tqdm=True),
|
| 238 |
):
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
final_negative_prompt = style_negative_prompt + " " + negative_prompt
|
| 243 |
-
else:
|
| 244 |
-
final_negative_prompt = style_negative_prompt
|
| 245 |
-
|
| 246 |
-
final_negative_prompt = final_negative_prompt.strip()
|
| 247 |
-
|
| 248 |
-
if trigger_word:
|
| 249 |
-
positive_prompt = f"{trigger_word} {positive_prompt}"
|
| 250 |
-
|
| 251 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 252 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 253 |
|
| 254 |
start_time = time.time()
|
| 255 |
|
| 256 |
-
images =
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
| 267 |
|
| 268 |
end_time = time.time()
|
| 269 |
duration = end_time - start_time
|
|
@@ -280,39 +256,38 @@ def generate_dev(
|
|
| 280 |
|
| 281 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 282 |
|
| 283 |
-
# Generation function for
|
| 284 |
@spaces.GPU
|
| 285 |
-
def
|
| 286 |
prompt: str,
|
|
|
|
| 287 |
seed: int = 0,
|
| 288 |
width: int = 1024,
|
| 289 |
height: int = 1024,
|
| 290 |
-
guidance_scale: float = 4.
|
| 291 |
randomize_seed: bool = False,
|
| 292 |
-
num_inference_steps: int =
|
| 293 |
num_images: int = 1,
|
| 294 |
zip_images: bool = False,
|
| 295 |
progress=gr.Progress(track_tqdm=True),
|
| 296 |
):
|
| 297 |
if randomize_seed:
|
| 298 |
seed = random.randint(0, MAX_SEED)
|
| 299 |
-
generator = torch.Generator().manual_seed(seed)
|
| 300 |
|
| 301 |
start_time = time.time()
|
| 302 |
|
| 303 |
-
images =
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
))[-1] # Take the final image only
|
| 315 |
-
images.append(final_img)
|
| 316 |
|
| 317 |
end_time = time.time()
|
| 318 |
duration = end_time - start_time
|
|
@@ -329,7 +304,7 @@ def generate_krea(
|
|
| 329 |
|
| 330 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 331 |
|
| 332 |
-
# Main generation function
|
| 333 |
@spaces.GPU
|
| 334 |
def generate(
|
| 335 |
model_choice: str,
|
|
@@ -339,33 +314,31 @@ def generate(
|
|
| 339 |
seed: int = 0,
|
| 340 |
width: int = 1024,
|
| 341 |
height: int = 1024,
|
| 342 |
-
guidance_scale: float = 3,
|
| 343 |
randomize_seed: bool = False,
|
| 344 |
-
|
| 345 |
-
num_inference_steps: int = 30,
|
| 346 |
num_images: int = 1,
|
| 347 |
zip_images: bool = False,
|
| 348 |
progress=gr.Progress(track_tqdm=True),
|
| 349 |
):
|
| 350 |
-
if model_choice == "
|
| 351 |
-
return
|
| 352 |
prompt=prompt,
|
| 353 |
-
negative_prompt=negative_prompt,
|
| 354 |
-
use_negative_prompt=use_negative_prompt,
|
| 355 |
seed=seed,
|
| 356 |
width=width,
|
| 357 |
height=height,
|
| 358 |
guidance_scale=guidance_scale,
|
| 359 |
randomize_seed=randomize_seed,
|
| 360 |
-
style_name=style_name,
|
| 361 |
num_inference_steps=num_inference_steps,
|
| 362 |
num_images=num_images,
|
| 363 |
zip_images=zip_images,
|
| 364 |
progress=progress,
|
| 365 |
)
|
| 366 |
-
elif model_choice == "
|
| 367 |
-
|
|
|
|
| 368 |
prompt=prompt,
|
|
|
|
| 369 |
seed=seed,
|
| 370 |
width=width,
|
| 371 |
height=height,
|
|
@@ -379,12 +352,12 @@ def generate(
|
|
| 379 |
else:
|
| 380 |
raise ValueError("Invalid model choice")
|
| 381 |
|
| 382 |
-
# Examples
|
| 383 |
examples = [
|
| 384 |
-
"An attractive young woman with blue eyes lying face down on the bed,
|
| 385 |
-
"Headshot of handsome young man, wearing dark gray sweater
|
| 386 |
-
"
|
| 387 |
-
"High-resolution photograph
|
| 388 |
]
|
| 389 |
|
| 390 |
css = '''
|
|
@@ -415,21 +388,23 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 415 |
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
| 416 |
|
| 417 |
with gr.Row():
|
| 418 |
-
# Model choice radio button above additional options
|
| 419 |
model_choice = gr.Radio(
|
| 420 |
-
choices=["
|
| 421 |
label="Select Model",
|
| 422 |
-
value="
|
| 423 |
)
|
| 424 |
|
| 425 |
with gr.Accordion("Additional Options", open=False):
|
| 426 |
-
|
| 427 |
-
label="
|
| 428 |
-
choices=
|
| 429 |
-
value=
|
| 430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
)
|
| 432 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
|
| 433 |
negative_prompt = gr.Text(
|
| 434 |
label="Negative prompt",
|
| 435 |
max_lines=1,
|
|
@@ -461,7 +436,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 461 |
)
|
| 462 |
guidance_scale = gr.Slider(
|
| 463 |
label="Guidance Scale",
|
| 464 |
-
minimum=0.
|
| 465 |
maximum=20.0,
|
| 466 |
step=0.1,
|
| 467 |
value=3.5,
|
|
@@ -469,7 +444,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 469 |
num_inference_steps = gr.Slider(
|
| 470 |
label="Number of inference steps",
|
| 471 |
minimum=1,
|
| 472 |
-
maximum=
|
| 473 |
step=1,
|
| 474 |
value=28,
|
| 475 |
)
|
|
@@ -487,26 +462,48 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 487 |
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
| 488 |
zip_file = gr.File(label="Download ZIP")
|
| 489 |
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
| 496 |
)
|
| 497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
use_negative_prompt.change(
|
| 499 |
fn=lambda x: gr.update(visible=x),
|
| 500 |
inputs=use_negative_prompt,
|
| 501 |
-
outputs=negative_prompt
|
| 502 |
-
api_name=False,
|
| 503 |
)
|
| 504 |
|
|
|
|
| 505 |
gr.on(
|
| 506 |
-
triggers=[
|
| 507 |
-
prompt.submit,
|
| 508 |
-
run_button.click,
|
| 509 |
-
],
|
| 510 |
fn=generate,
|
| 511 |
inputs=[
|
| 512 |
model_choice,
|
|
@@ -518,7 +515,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 518 |
height,
|
| 519 |
guidance_scale,
|
| 520 |
randomize_seed,
|
| 521 |
-
style_selection,
|
| 522 |
num_inference_steps,
|
| 523 |
num_images,
|
| 524 |
zip_images,
|
|
@@ -527,5 +523,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 527 |
api_name="run",
|
| 528 |
)
|
| 529 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
if __name__ == "__main__":
|
| 531 |
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 12 |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 13 |
|
| 14 |
# Description for the app
|
| 15 |
+
DESCRIPTION = """## flux-krea vs qwen"""
|
| 16 |
|
| 17 |
# Helper functions
|
| 18 |
def save_image(img):
|
|
|
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
MAX_IMAGE_SIZE = 2048
|
| 30 |
|
| 31 |
+
# Load pipelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
dtype = torch.bfloat16
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
|
| 35 |
+
# Flux.1-krea pipeline
|
| 36 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
|
|
|
| 37 |
good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 38 |
pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 39 |
|
| 40 |
+
# Qwen/Qwen-Image pipeline
|
| 41 |
+
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
|
| 42 |
+
|
| 43 |
+
# Define custom flux_pipe_call for Flux.1-krea
|
| 44 |
@torch.inference_mode()
|
| 45 |
def flux_pipe_call_that_returns_an_iterable_of_images(
|
| 46 |
self,
|
|
|
|
| 162 |
|
| 163 |
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
|
| 164 |
|
| 165 |
+
# Helper functions for Flux.1-krea
|
| 166 |
def calculate_shift(
|
| 167 |
image_seq_len,
|
| 168 |
base_seq_len: int = 256,
|
|
|
|
| 198 |
timesteps = scheduler.timesteps
|
| 199 |
return timesteps, num_inference_steps
|
| 200 |
|
| 201 |
+
# Aspect ratios
|
| 202 |
+
aspect_ratios = {
|
| 203 |
+
"1:1": (1328, 1328),
|
| 204 |
+
"16:9": (1664, 928),
|
| 205 |
+
"9:16": (928, 1664),
|
| 206 |
+
"4:3": (1472, 1140),
|
| 207 |
+
"3:4": (1140, 1472)
|
| 208 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
# Generation function for Flux.1-krea
|
| 211 |
@spaces.GPU
|
| 212 |
+
def generate_krea(
|
| 213 |
prompt: str,
|
|
|
|
|
|
|
| 214 |
seed: int = 0,
|
| 215 |
width: int = 1024,
|
| 216 |
height: int = 1024,
|
| 217 |
+
guidance_scale: float = 4.5,
|
| 218 |
randomize_seed: bool = False,
|
| 219 |
+
num_inference_steps: int = 28,
|
|
|
|
| 220 |
num_images: int = 1,
|
| 221 |
zip_images: bool = False,
|
| 222 |
progress=gr.Progress(track_tqdm=True),
|
| 223 |
):
|
| 224 |
+
if randomize_seed:
|
| 225 |
+
seed = random.randint(0, MAX_SEED)
|
| 226 |
+
generator = torch.Generator(device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
start_time = time.time()
|
| 229 |
|
| 230 |
+
images = []
|
| 231 |
+
for _ in range(num_images):
|
| 232 |
+
final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 233 |
+
prompt=prompt,
|
| 234 |
+
guidance_scale=guidance_scale,
|
| 235 |
+
num_inference_steps=num_inference_steps,
|
| 236 |
+
width=width,
|
| 237 |
+
height=height,
|
| 238 |
+
generator=generator,
|
| 239 |
+
output_type="pil",
|
| 240 |
+
good_vae=good_vae,
|
| 241 |
+
))[-1] # Take the final image only
|
| 242 |
+
images.append(final_img)
|
| 243 |
|
| 244 |
end_time = time.time()
|
| 245 |
duration = end_time - start_time
|
|
|
|
| 256 |
|
| 257 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 258 |
|
| 259 |
+
# Generation function for Qwen/Qwen-Image
|
| 260 |
@spaces.GPU
|
| 261 |
+
def generate_qwen(
|
| 262 |
prompt: str,
|
| 263 |
+
negative_prompt: str = "",
|
| 264 |
seed: int = 0,
|
| 265 |
width: int = 1024,
|
| 266 |
height: int = 1024,
|
| 267 |
+
guidance_scale: float = 4.0,
|
| 268 |
randomize_seed: bool = False,
|
| 269 |
+
num_inference_steps: int = 50,
|
| 270 |
num_images: int = 1,
|
| 271 |
zip_images: bool = False,
|
| 272 |
progress=gr.Progress(track_tqdm=True),
|
| 273 |
):
|
| 274 |
if randomize_seed:
|
| 275 |
seed = random.randint(0, MAX_SEED)
|
| 276 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 277 |
|
| 278 |
start_time = time.time()
|
| 279 |
|
| 280 |
+
images = pipe_qwen(
|
| 281 |
+
prompt=prompt,
|
| 282 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
| 283 |
+
height=height,
|
| 284 |
+
width=width,
|
| 285 |
+
guidance_scale=guidance_scale,
|
| 286 |
+
num_inference_steps=num_inference_steps,
|
| 287 |
+
num_images_per_prompt=num_images,
|
| 288 |
+
generator=generator,
|
| 289 |
+
output_type="pil",
|
| 290 |
+
).images
|
|
|
|
|
|
|
| 291 |
|
| 292 |
end_time = time.time()
|
| 293 |
duration = end_time - start_time
|
|
|
|
| 304 |
|
| 305 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 306 |
|
| 307 |
+
# Main generation function
|
| 308 |
@spaces.GPU
|
| 309 |
def generate(
|
| 310 |
model_choice: str,
|
|
|
|
| 314 |
seed: int = 0,
|
| 315 |
width: int = 1024,
|
| 316 |
height: int = 1024,
|
| 317 |
+
guidance_scale: float = 3.5,
|
| 318 |
randomize_seed: bool = False,
|
| 319 |
+
num_inference_steps: int = 28,
|
|
|
|
| 320 |
num_images: int = 1,
|
| 321 |
zip_images: bool = False,
|
| 322 |
progress=gr.Progress(track_tqdm=True),
|
| 323 |
):
|
| 324 |
+
if model_choice == "Flux.1-krea":
|
| 325 |
+
return generate_krea(
|
| 326 |
prompt=prompt,
|
|
|
|
|
|
|
| 327 |
seed=seed,
|
| 328 |
width=width,
|
| 329 |
height=height,
|
| 330 |
guidance_scale=guidance_scale,
|
| 331 |
randomize_seed=randomize_seed,
|
|
|
|
| 332 |
num_inference_steps=num_inference_steps,
|
| 333 |
num_images=num_images,
|
| 334 |
zip_images=zip_images,
|
| 335 |
progress=progress,
|
| 336 |
)
|
| 337 |
+
elif model_choice == "Qwen Image":
|
| 338 |
+
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
| 339 |
+
return generate_qwen(
|
| 340 |
prompt=prompt,
|
| 341 |
+
negative_prompt=final_negative_prompt,
|
| 342 |
seed=seed,
|
| 343 |
width=width,
|
| 344 |
height=height,
|
|
|
|
| 352 |
else:
|
| 353 |
raise ValueError("Invalid model choice")
|
| 354 |
|
| 355 |
+
# Examples
|
| 356 |
examples = [
|
| 357 |
+
"An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it",
|
| 358 |
+
"Headshot of handsome young man, wearing dark gray sweater, brown hair and short beard, serious look, black background, soft studio lighting",
|
| 359 |
+
"A medium-angle shot of a young woman with long brown hair, wearing glasses, standing in front of purple and white lights",
|
| 360 |
+
"High-resolution photograph of a woman, photorealistic, vibrant colors"
|
| 361 |
]
|
| 362 |
|
| 363 |
css = '''
|
|
|
|
| 388 |
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
| 389 |
|
| 390 |
with gr.Row():
|
|
|
|
| 391 |
model_choice = gr.Radio(
|
| 392 |
+
choices=["Flux.1-krea", "Qwen Image"],
|
| 393 |
label="Select Model",
|
| 394 |
+
value="Flux.1-krea"
|
| 395 |
)
|
| 396 |
|
| 397 |
with gr.Accordion("Additional Options", open=False):
|
| 398 |
+
aspect_ratio = gr.Dropdown(
|
| 399 |
+
label="Aspect Ratio",
|
| 400 |
+
choices=list(aspect_ratios.keys()),
|
| 401 |
+
value="1:1",
|
| 402 |
+
)
|
| 403 |
+
use_negative_prompt = gr.Checkbox(
|
| 404 |
+
label="Use negative prompt (Qwen Image only)",
|
| 405 |
+
value=False,
|
| 406 |
+
visible=False
|
| 407 |
)
|
|
|
|
| 408 |
negative_prompt = gr.Text(
|
| 409 |
label="Negative prompt",
|
| 410 |
max_lines=1,
|
|
|
|
| 436 |
)
|
| 437 |
guidance_scale = gr.Slider(
|
| 438 |
label="Guidance Scale",
|
| 439 |
+
minimum=0.0,
|
| 440 |
maximum=20.0,
|
| 441 |
step=0.1,
|
| 442 |
value=3.5,
|
|
|
|
| 444 |
num_inference_steps = gr.Slider(
|
| 445 |
label="Number of inference steps",
|
| 446 |
minimum=1,
|
| 447 |
+
maximum=100,
|
| 448 |
step=1,
|
| 449 |
value=28,
|
| 450 |
)
|
|
|
|
| 462 |
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
| 463 |
zip_file = gr.File(label="Download ZIP")
|
| 464 |
|
| 465 |
+
# Update aspect ratio
|
| 466 |
+
def set_dimensions(ar):
|
| 467 |
+
w, h = aspect_ratios[ar]
|
| 468 |
+
return gr.update(value=w), gr.update(value=h)
|
| 469 |
+
|
| 470 |
+
aspect_ratio.change(
|
| 471 |
+
fn=set_dimensions,
|
| 472 |
+
inputs=aspect_ratio,
|
| 473 |
+
outputs=[width, height]
|
| 474 |
)
|
| 475 |
|
| 476 |
+
# Update model-specific settings
|
| 477 |
+
def update_settings(mc):
|
| 478 |
+
if mc == "Flux.1-krea":
|
| 479 |
+
return (
|
| 480 |
+
gr.update(value=28),
|
| 481 |
+
gr.update(value=3.5),
|
| 482 |
+
gr.update(visible=False)
|
| 483 |
+
)
|
| 484 |
+
elif mc == "Qwen Image":
|
| 485 |
+
return (
|
| 486 |
+
gr.update(value=50),
|
| 487 |
+
gr.update(value=4.0),
|
| 488 |
+
gr.update(visible=True)
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
model_choice.change(
|
| 492 |
+
fn=update_settings,
|
| 493 |
+
inputs=model_choice,
|
| 494 |
+
outputs=[num_inference_steps, guidance_scale, use_negative_prompt]
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
# Negative prompt visibility
|
| 498 |
use_negative_prompt.change(
|
| 499 |
fn=lambda x: gr.update(visible=x),
|
| 500 |
inputs=use_negative_prompt,
|
| 501 |
+
outputs=negative_prompt
|
|
|
|
| 502 |
)
|
| 503 |
|
| 504 |
+
# Run button and prompt submit
|
| 505 |
gr.on(
|
| 506 |
+
triggers=[prompt.submit, run_button.click],
|
|
|
|
|
|
|
|
|
|
| 507 |
fn=generate,
|
| 508 |
inputs=[
|
| 509 |
model_choice,
|
|
|
|
| 515 |
height,
|
| 516 |
guidance_scale,
|
| 517 |
randomize_seed,
|
|
|
|
| 518 |
num_inference_steps,
|
| 519 |
num_images,
|
| 520 |
zip_images,
|
|
|
|
| 523 |
api_name="run",
|
| 524 |
)
|
| 525 |
|
| 526 |
+
# Examples
|
| 527 |
+
gr.Examples(
|
| 528 |
+
examples=examples,
|
| 529 |
+
inputs=prompt,
|
| 530 |
+
outputs=[result, seed_display, generation_time, zip_file],
|
| 531 |
+
fn=generate,
|
| 532 |
+
cache_examples=False,
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
if __name__ == "__main__":
|
| 536 |
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
|