Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,237 Bytes
7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 93c4cc1 7cad394 5bcfcb2 7cad394 93c4cc1 5bcfcb2 7cad394 93c4cc1 7cad394 217e7be 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 b8f13cf 7cad394 7c8b297 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 7cad394 5bcfcb2 371e020 5bcfcb2 7cad394 5bcfcb2 7cad394 bac1858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import sys
import random
import uuid
import json
import time
from threading import Thread
from typing import Iterable
from huggingface_hub import snapshot_download
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen3VLForConditionalGeneration,
AutoModelForImageTextToText,
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# CACHE_PATH = "./model_cache"
# if not os.path.exists(CACHE_PATH):
# os.makedirs(CACHE_PATH)
#
# model_path_d_local = snapshot_download(
# repo_id='rednote-hilab/dots.ocr',
# local_dir=os.path.join(CACHE_PATH, 'dots.ocr'),
# max_workers=20,
# local_dir_use_symlinks=False
# )
#
# config_file_path = os.path.join(model_path_d_local, "configuration_dots.py")
#
# if os.path.exists(config_file_path):
# with open(config_file_path, 'r') as f:
# input_code = f.read()
#
# lines = input_code.splitlines()
# if "class DotsVLProcessor" in input_code and not any("attributes = " in line for line in lines):
# output_lines = []
# for line in lines:
# output_lines.append(line)
# if line.strip().startswith("class DotsVLProcessor"):
# output_lines.append(" attributes = [\"image_processor\", \"tokenizer\"]")
#
# with open(config_file_path, 'w') as f:
# f.write('\n'.join(output_lines))
# print("Patched configuration_dots.py successfully.")
#
#sys.path.append(model_path_d_local)
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Chandra-OCR
MODEL_ID_V = "datalab-to/chandra"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Nanonets-OCR2-3B
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(device).eval()
# Load Dots.OCR from the local, patched directory
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
model_d = AutoModelForCausalLM.from_pretrained(
MODEL_PATH_D,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
).eval()
# Load olmOCR-2-7B-1025
MODEL_ID_M = "allenai/olmOCR-2-7B-1025"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "olmOCR-2-7B-1025":
processor = processor_m
model = model_m
elif model_name == "Nanonets-OCR2-3B":
processor = processor_x
model = model_x
elif model_name == "Chandra-OCR":
processor = processor_v
model = model_v
elif model_name == "Dots.OCR":
processor = processor_d
model = model_d
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
image_examples = [
["OCR the content perfectly.", "examples/3.jpg"],
["Perform OCR on the image.", "examples/1.jpg"],
["Extract the contents. [page].", "examples/2.jpg"],
]
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
gr.Markdown("# **Multimodal OCR3**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)")
model_choice = gr.Radio(
choices=["Nanonets-OCR2-3B", "Chandra-OCR", "Dots.OCR", "olmOCR-2-7B-1025"],
label="Select Model",
value="Nanonets-OCR2-3B"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |